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Abstract

Software service providers increasingly adopt the cloud computing paradigm
because it provides on-demand access to a nearly unlimited pool of resources.
This typically entails outsourcing their computation and data to the cloud
through the deployment of their software services, storing business-sensitive
data, and streamlining their processes on the cloud. Two of the core challenges
that the industry faces concern with (i) how to achieve outsourced computation
in an efficient and manageable manner through agile and optimised deployments,
and (ii) how to protect sensitive data in untrusted environments, in particular
the public cloud, and yet pragmatically preserve business functionalities. To
optimise the deployments, cloud providers have been improving the computing
infrastructure, e.g. by introducing container orchestration frameworks to
improve the automation and agility of software deployments. Moreover, at
the higher layers, software service providers have been migrating complex
and compute-intensive software systems, such as engineering workflows, to
the cloud to gain efficiency. To preserve the utility of protected data in the
cloud, researchers have proposed many cryptographic techniques for search and
computing on encrypted data.

However, software practitioners are confronted with several challenges. First,
the elastic scaling of computing resources such as containers causes non-
negligible delays, known as cold start, which prohibits agile and swift large-scale
deployment of software services. This concern often appears in serverless
computing, and in general auto-scaling systems, for applications with deadline-
based service-level objectives (SLOs). There are many techniques for low-
latency instantiation of resources at various layers of the infrastructure.
However, the existing approaches for Kubernetes, the de facto standard in
container orchestration, are still unable to fully mitigate the cold start problem.
Second, distributed and compute-intensive applications, in particular engineering
workflows, require tailor-made and repeatable deployments to decrease execution
time in the cloud. The execution of this class of applications might take
days, but the right composition of cloud resources can potentially reduce the
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completion time to minutes. However, it is not trivial for engineering domain
experts to decide upfront the amount and type of the required cloud resources
and make cost-effective decisions for future iterations of their deployments.
Third, the cryptographic techniques for search and computing on encrypted
data on the cloud are diverse in terms of security, performance, and query
expressiveness. Moreover, the underlying concepts and implementation details
of these schemes are often complicated for application developers. Next
to the error-prone process of choosing a scheme, integration of these data
protection techniques into heterogeneous and polyglot software, e.g. microservice
architectures, is a non-trivial task for security experts. Lastly, the ability to
plug in cryptographic schemes in this scope is an important aspect since new
cryptographic constructions with new properties are being presented frequently.
These issues require a certain degree of cryptographic agility.

The goal of this dissertation is to address the above-mentioned challenges
in order to facilitate the process of outsourcing computation to the cloud
via efficient deployments, and pragmatically store data on the cloud using
advanced protections. To achieve this, our contributions are threefold: (i) we
present and evaluate three approaches to reduce the cold start latency during
elastic scaling of containers in Kubernetes. To achieve this, we present various
techniques such as library sharing, pre-creating networking resources, and
employing imperative configuration management unlike the existing declarative
configuration mechanism of Kubernetes. (ii) We present InfraComposer, a policy-
driven middleware that automates smart and adaptive workflow deployment in
the cloud, leveraging domain-specific knowledge about the tools involved in the
workflows. It further re-composes the deployment plans based on the scaling
policies and the execution history towards more efficient and faster executions.
And lastly (iii) we present DataBlinder, a distributed data-access middleware
that encapsulates the complexity of the protection tactics to enable search and
computing on encrypted data. It enables software service providers to securely
and in a configurable manner outsource sensitive as well as non-sensitive data to
the cloud. The middleware architecture is extensible to allow security experts
to incorporate new tactics as well as provide security policies, and enables the
developers to select the required protection level through certain abstractions.

The contributions are based on several application cases in the domains of
aeronautics, finance, and healthcare. We have validated and evaluated our
results. This thesis shows how they effectively address the above-mentioned
challenges. Lastly, the dissertation outlines future directions to go beyond the
limitations of the presented achievements.



Beknopte samenvatting

Software service providers passen steeds vaker het cloud computing-paradigma
toe omdat het on-demand toegang biedt tot een virtueel onbeperkte bron
van computer resources. Dit houdt doorgaans in dat ze hun programma’s
en gegevens uitbesteden aan cloud providers. Een gevolg hiervan is dat al
de software services, gevoelige bedrijfsgegevens en processen van de software
service provider zich in de cloud omgeving bevinden. Twee van de belangrijkste
uitdagingen waarmee de industrie geconfronteerd wordt, zijn (i) hoe de
uitbestede rekenkracht op efficiënte en eenvoudige wijze kan ingezet worden
voor flexibele en geoptimaliseerde deployments en (ii) hoe de uitbestede opslag
veilig kan gebruikt worden in een niet-vertrouwde omgeving, zoals bijvoorbeeld
de publieke cloud, en toch op pragmatische wijze de functionaliteit van deze
gegevens behouden kan worden. Om de implementaties te optimaliseren, hebben
cloud providers hun computerinfrastructuur verbeterd, b.v. door de introductie
van frameworks voor container orkestratie om zo de automatisering en flexibiliteit
van software-implementaties te verbeteren. Bovendien migreren software service
providers op steeds hogere software niveaus hun complexe en rekenintensieve
systemen, zoals engineering workflows, naar de cloud om zo de efficiëntie te
verhogen. Om het nut van beschermde gegevens in de cloud te behouden, hebben
onderzoekers een brede waaier aan cryptografische technieken voorgesteld voor
het uitvoeren van zoekopdrachten en berekeningen in versleutelde gegevens.

Software ontwikkelaars worden echter geconfronteerd met verschillende uitda-
gingen. Eerst, het elastisch schalen van computer resources, zoals containers,
veroorzaakt niet te verwaarlozen vertragingen, ook bekend als cold start, deze
vertragingen hinderen een flexibele en snelle grootschalige implementatie van
software services. Dit probleem stelt zich vaak bij serverless computing, en
meer algemeen bij systemen die automatisch schalen, voor toepassingen met op
deadlines gebaseerde service-level objectives (SLO’s). Er zijn veel technieken
voor het instantiëren van resources met lage latentie in verschillende lagen van
de infrastructuur. De bestaande oplossingen voor cold start in Kubernetes,
de de facto standaard in container orkestratie, zijn echter nog steeds niet in
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staat om het cold start probleem volledig te verhelpen. Ten tweede vereisen
gedistribueerde en rekenintensieve applicaties, met name engineering workflows,
op maat gemaakte en reproduceerbare implementaties om de uitvoeringstijd
in de cloud te verkorten. De uitvoering van deze klasse van applicaties
kan dagen duren, maar de juiste samenstelling van cloud resources kan de
doorlooptijd mogelijks tot minuten terugbrengen. Het is echter niet triviaal
voor technische domeinexperts om vooraf de hoeveelheid en het type van
de vereiste cloud resources te bepalen en kosteneffectieve beslissingen te
nemen voor toekomstige iteraties van hun implementaties. Ten derde zijn
de cryptografische technieken voor zoeken en rekenen op versleutelde gegevens
in de cloud divers in termen van beveiliging, prestaties en expressiviteit van
zoekopdrachten. Bovendien zijn de onderliggende concepten en implementatie
details van deze schema’s vaak ingewikkeld voor applicatieontwikkelaars. Naast
het foutgevoelige proces voor het selecteren van een schema, is de integratie van
deze gegevensbeschermingstechnieken in heterogene en polyglot software, b.v.
microservice-architecturen, een niet-triviale taak voor beveiligingsexperts. Ten
slotte is de mogelijkheid om cryptografische schema’s in deze omgeving in te
pluggen een belangrijk aspect, aangezien er regelmatig nieuwe cryptografische
constructies met nieuwe eigenschappen worden ontwikkeld. Deze problemen
vereisen een zekere mate van cryptografische agility.

Het doel van dit proefschrift is om de bovengenoemde uitdagingen aan te
pakken, om zo het proces van het uitbesteden van berekeningen naar de cloud te
vergemakkelijken via efficiënte implementaties, en om gegevens pragmatisch op te
slaan in de cloud met behulp van geavanceerde beveiligingen. Om dit te bereiken,
zijn onze bijdragen drieledig: (i) we presenteren en evalueren drie benaderingen
om de latentie bij cold start tijdens elastische schaling van containers in
Kubernetes te verminderen. Om dit te bereiken, presenteren we verschillende
technieken, zoals het delen van software bibliotheken, het proactiev aanmaken
van netwerkbronnen en het toepassen van imperatief configuratiebeheer, dit
laatste is in tegenstelling tot het bestaande declaratieve configuratie mechanisme
van Kubernetes. (ii) We presenteren Infra Composer, een beleidsgestuurde
middleware die slimme en adaptieve workflow-implementatie in de cloud
automatiseert, gebruikmakend van domeinspecifieke kennis over de tools die
bij de workflows betrokken zijn. Het stelt verder de implementatieplannen
opnieuw samen op basis van het schaalingsbeleid en de uitvoeringsgeschiedenis
van de toepassing om zo efficiëntere en snellere uitvoeringen te bekomen. Tot
slot (iii) presenteren we DataBlinder, een gedistribueerde middleware voor
gegevenstoegang die de complexiteit van de beveiligingstactieken inkapselt
om zoeken en berekeningen op versleutelde gegevens mogelijk te maken. Het
stelt software service providers in staat om op een veilige en configureerbare
manier gevoelige en niet-gevoelige gegevens uit te besteden aan de cloud. De
middleware-architectuur is uitbreidbaar om beveiligingsexperts in staat te stellen
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nieuwe tactieken op te nemen en beveiligingsbeleid te bieden, daarnaast stelt
DataBlinder de ontwikkelaars in staat om het vereiste beveiligingsniveau te
selecteren door middel van bepaalde abstracties.

De bijdragen zijn gebaseerd op verschillende toepassingsgebieden zoals
luchtvaart, financiën en gezondheidszorg. We hebben onze resultaten
gevalideerd en geëvalueerd. Dit proefschrift laat zien hoe deze contributies
de bovengenoemde uitdagingen effectief aanpakken. Ten slotte schetst het
proefschrift mogelijke richtingen om verder te gaan dan de beperkingen van de
gepresenteerde bijdragen.
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Chapter 1

Introduction

In the last decades, our daily lives have become more dependent on software-
intensive systems, from banking to healthcare. Most businesses rely on software
solutions to optimise their services and processes to deliver higher levels of
customer satisfaction. The rapid growth of the customer base and their
expectations drive such businesses towards more effective and cost-efficient
models of computing infrastructure. To benefit from on-demand access to
nearly unlimited and diverse pools of resources, the most prominent model over
the last decade has become outsourcing data and computational resources to
the infrastructure of cloud providers [37]. However, this outsourcing model has
brought along several technical and societal challenges for both the cloud and
software service providers.

Cloud providers offer different service models, varying from Infrastructure-as-
a-Service (IaaS) to Function-as-a-Service (FaaS). They continuously improve
the underpinning infrastructure to be more efficient, agile, secure and robust
by employing and optimising various virtualisation technologies. For instance,
virtual machines are the de facto, industry-standard infrastructural components
offered by cloud providers. However, recent advancements in execution models
of cloud-based software systems, such as serverless computing [10], require more
agile and reproducible setups. As a result, operating-system-level virtualisation,
such as containers, has gained popularity because of their faster startup time and
their potential to act as relatively lightweight hosting environments [181]. These
advancements and the ever-increasing demand for more efficient infrastructure
have triggered cloud providers to optimize the underpinning systems rigorously.

The cloud computing paradigm has improved the business agility of software
service providers by offering on-demand services enabling resources to be added
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2 INTRODUCTION

or removed instantly [37]; however, offering on demand services requires a
high degree of resource configurability as a feature. For example, there are
diverse types of virtual machines, varying from memory- to compute-optimised
instance types. On top of that, a very large ecosystem of automation and
orchestration tooling has emerged as a consequence of this flexibility. That
leads to capacity-planning complexities [141, 106] during the initial steps as
well as while software applications are running. For example, in aeronautics, it
is not trivial for aerospace engineers to decide upfront the amount and type of
required computational resources to perform an aircraft simulation and make
cost-effective decisions for the future iterations of their experiments [133].

In the scope of outsourcing data to cloud providers, most businesses with mission-
critical systems and sensitive data are concerned with regulatory compliances and
data protection regulations [173]. Although cloud computing offerings unlock
many economical opportunities, cloud providers are still considered to be honest
in providing services, but at the same time potentially curious to learn more.
In fact, in most cases, the data protection demand is requested by customers
of software service providers. For example, a hospital that uses a Software-
as-a-Service (SaaS) application to store medical data in the cloud, expects
their data to be protected via encryption. To meet the privacy requirements,
cryptographic key management should be handled by the software provider,
outside the cloud storage infrastructure. This setting introduces new technical
challenges if software providers aim at performing certain operations such as
search and computation without decrypting the data stored in the cloud, or
transferring the entire database to the client. To tackle this problem, the
cryptography research community has developed a large repertoire of pragmatic
protection techniques [71, 27, 1]. However, putting them into practice is not
trivial in existing cloud-based software systems for both the security experts
and software developers [8, 146, 2]. This situation screams for new data access
systems with cryptographic agility, meaning that the extension and usage of
techniques should be made easy and less error-prone.

This dissertation focuses on addressing the challenges of outsourcing data and
computation to public cloud infrastructure through adaptive and reflective middle-
ware platforms. In particular, we improve support for such computational model
through (i) a middleware to compose and auto-scale execution infrastructure
for the deployment of real-world engineering applications, (ii) an approach to
improve the auto-scaling speed of computing instances, and (iii) a data access
middleware with an extensible and cryptographically agile architecture to enable
search and computation on encrypted data.

This chapter first presents the context of outsourcing computation and data to
the cloud, including the motivation and the scope of this thesis. Second, the
chapter outlines some key challenges and requirements with regard to several
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application scenarios in the context of the aeronautics, automotive, FinTech and
healthcare industries. Next, the goals and research approach of this dissertation
are discussed. Subsequently, it presents the three major contributions of this
work. Finally, this chapter concludes with an overview of the structure of the
rest of this dissertation.

1.1 Outsourcing computation to the cloud

Major industries, such as aerospace and automotive, employ various sets of
orchestrated, specialised software to simulate and optimise complex designs.
Engineers use different hardware to deploy and execute these workflows, e.g.,
their desktop computers or High-Performance Computing (HPC) clusters.
Because of capacity, resource configurability and agility reasons, cloud computing
is a prominent option for outsourcing the computational infrastructure to cloud
providers. In this subsection, we present various concepts and the components
required for flexible and efficient cloud-based deployments. The subsection starts
with the configurability of cloud platforms, and it further presents high-level
background regarding autoscaling and virtualisation optimisation.

Configurability of cloud computing platforms. NIST defines cloud computing
as a model for enabling on-demand network access to (theoretically) an
unlimited pool of configurable resources such as networks, servers, storage,
and services [140]. These resources can be quickly provisioned or dismissed by
cloud users. For instance, OpenStack [157] is an open standard cloud computing
platform developed by Rackspace and NASA. An outsourced application to this
platform can be deployed using various types of computing instances, networks,
storage types, images, and so on. The configurable options can be even more
fine-grained depending on the complexity of the platform. For example, the
computing instances can be either classic virtual machines or containers, different
flavours with various numbers of cores and memory capacity, or even compute-
optimised instances equipped with processor affinity (CPU pinning).

Infrastructure composability and orchestration tools. To run a complex
software system on the cloud, for example an engineering workflow to optimise
and simulate the electrical wiring of an aircraft cockpit, cloud orchestration helps
with the automation of the deployment process using various IaaS and Platform-
as-a-Service (PaaS) capabilities. To compose a software-defined infrastructure
for such applications, the aforementioned configurable cloud components
should be modularised in a way that can be flexibly combined. This enables
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businesses to streamline their resource allocation, and workload distribution
of software applications. For example, the OASIS Topology and Orchestration
Specification for Cloud Applications (TOSCA) is a standard language to describe
the topologies of cloud-based services, and their underpinning components,
relationships and the process that manages them. Using a realization of this
standard, e.g. Cloudify, complex applications can compose their services and
computing infrastructure as agile as possible without vendor lock-in concerns.

Elasticity and auto-scaling of resources. Elasticity in the context of cloud
computing means the degree in which a software system is able to adapt to
workload changes by adding or removing computational resources with the
goal of meeting service-level objectives (SLO) [93, 92]. These resources can
be re-scaled vertically or horizontally. Vertical scaling changes computational
capacity of a computing component, such as adding more CPU power to a
virtual machine. Horizontal scaling rescales the computing components by
adding or removing extra replicas, such as adding more virtual machines.

Auto-scaling and serverless computing. In the context of self-adaptive
systems, software services should adapt their computational capacity in case of
unexpected workload changes. This concern is not limited to SaaS applications
developed with IaaS and PaaS service-execution models. Recent models such
as serverless computing, e.g. FaaS, also require elasticity of the underpinning
computational components. To achieve cost-effective elastic scaling, in particular
based on SLOs, two main classes of approaches have received remarkable
attention by the researchers and practitioners, namely (1) reactive auto-
scaling systems that define threshold-based scaling rules and policies, and
(2) proactive auto-scaling systems [49] by employing predictive mechanisms
such as reinforcement learning.

Rapid elastic scaling through virtualisation layer optimisation. Next to auto-
scaling techniques, to meet the SLA requirements, auto-scaling systems should
be able to launch computational resources as quickly as possible. To achieve
this, cloud and service providers aim to optimise and improve the underlying
computational infrastructure. In particular, the virtualisation layer has gained
considerable traction. The classic virtualisation layer virtualises computer
hardware, storage mechanisms and computer networks. In this scope, for
example, hardware-assisted virtualisation improves performance accelerations
with the help of hardware capabilities (e.g. CPUs). However, isolating
applications with VM’s causes portability issues and needlessly duplicates kernel
resources. Operating-system-level virtualization, such as Linux Containers,
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try to alleviate these problems by sharing the operating system, using kernel
isolation mechanisms to separate the applications from each other. Containers
take advantage of Linux cgroups and namespace isolation to set limits on
resources and enable complete isolation for applications (e.g. process trees,
networking, file system, etc.). In addition to the benefits such as runtime
isolation, cost-effectiveness and portability, containers considerably improve
the deployment speed of software services. This has a direct impact on rapid
elasticity of resources as well as the speed of launching functions in the FaaS
model.

1.2 Outsourcing sensitive data to the cloud

Businesses, such as healthcare and FinTech, with sensitive data are cautious
about outsourcing their customer data to the cloud-based storage services
despite the cloud providers’ promises of high degree of security. However, to
benefit from cloud economics, these businesses require to tackle a number of
challenges. In this subsection, we present the context including the risks and
the state-of-the-art approaches for outsourcing data to untrusted environments,
such as public cloud platforms, in a pragmatic and protected fashion. In
particular, we present high-level background concerning various threat models,
legal requirements, the state of practice, and the advanced encryption techniques
for protecting data in use.

Real-world threats of outsourcing data to the cloud providers. Generally,
there are several types of threats and adversaries against outsourced data in
the scope of public cloud platforms. The first type of adversaries are the
tenants deployed next to the applications with sensitive data. Typically cloud
providers colocate their customers on the same compute nodes as much as
possible to maximise resource utilisation due to cost-efficiency reasons. This
opens up new opportunities for malicious tenants to access restricted data by
abusing known and unknown vulnerabilities in the underlying shared layers. For
example, critical vulnerabilities such as Meltdown [125] and Spectre [112] exploit
speculative execution in modern processors to render all protections useless and
steal sensitive data from the memory of other running programs. This line of
attacks are not limited to general-purpose processors. In fact, applications using
confidential computing, in particular Intel SGX, are proven to be vulnerable
as Foreshadow attacks [35, 201] managed to leak secrets protected within SGX
enclaves. This affects virtual machines, hypervisors, operating system kernel
memory and so forth.
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Next to the adversaries who aim to actively and maliciously steal secrets, the
second type of threat is based on adversaries who have copies of sensitive data at
various times without the query logs. This threat is called a snapshot adversary
and the malicious act is widely known as a data breach. In a public cloud setting,
a data breach can happen by storage configuration mistakes, insecure APIs,
and cloud providers’ insider threats such as malicious system administrators.
The threat is not limited to the breach of plaintext data. Recent research [148]
showed that even the breach of encrypted databases with medical data can
lead to plaintext recovery of a considerable amount of real patient data. In this
track, researchers only took advantage of techniques such as frequency analysis,
sorting and combinatorial optimisation.

Lastly, in most threat models, cloud providers are considered to be honest but
curious. In addition to the financial, political or insider-threat motivations for
looking into cloud-based storage systems, these companies are bound to local
jurisdictions. For example, the Foreign Intelligence Surveillance Amendments
Act (2008) of the United States, in particular Code § 1881a, permits coercion
of cloud providers in secret mass-surveillance from within their data centres.

The need for data protection by law. To keep the customers of software
service providers, e.g. patients of hospitals, protected against the aforementioned
threats, there are various data protection regulations such as GDPR in the EU.
For instance, the Health Insurance Portability and Accountability Act (HIPAA)
of the United States defines a breach notification rule (45 CFR §§ 164.400-414).
It demands that healthcare businesses to notify the patients in case of any
breach of protected health information. Moreover, it recommends the use of
appropriate encryption techniques for such data.

State-of-practice data protection mechanisms. There are three major states
of digital data that require confidentiality, integrity and availability [152]:

• Data in transit. Data in transit refers to when data flows over protected
or unprotected networks. Protection mechanisms in this scope secure the
client-server interactions such as SSL/TLS in browsers, DTLS in datagram-
based applications, and IPsec in virtual private networks (VPN).

• Data at rest. This state is related to protecting data that is physically
stored in storage systems, for example by using standard encryption AES-
256 with key materials managed by hardware security modules (HSM).
Cloud providers offer key management services to enable data protection
at rest for storage services. For example, Amazon Web Services (AWS)
provides a service called KMS to manage cryptographic keys by using HSM
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under the hood for securing services through data encryption. Likewise,
Microsoft Azure offers a service called Key Vault for the same purpose.

• Data in use. This state refers to active data that is stored in a non-
persistent state (e.g. in RAM or CPU caches). In other words, a certain
set of operations is supposed to be performed over this data. At the
time of writing this thesis, to protect sensitive data in this state, cloud
providers primarily offer hardware-oriented solutions based on trusted
execution environments (TEE). For example, in Intel SGX, they use a
concept called enclave, meaning that sensitive content are protected in a
way that other processes outside of the enclave cannot access the content,
including the operating systems and hypervisors. In the semiconductor
industry, Intel SGX and ARM TrustZone are the well-known examples
of TEE architectures. As a cloud offering, for example, Microsoft Azure
offers confidential computing through SGX-enabled containers or virtual
machines.

Data protection support in SQL and NoSQL databases. Next to firewalls
in front of database servers, major databases, be it SQL or NoSQL, offer various
protection levels. The mainstream relational databases support transparent
data encryption (TDE). For example, MySQL, as one of the top-3 relational
databases [58], offers data-at-rest encryption through encrypting tablespaces
right before persisting data on the physical files. PostgreSQL, OracleDB and
MS SQL Server also offer the same feature. In the scope of NoSQL databases,
likewise, most databases support TDE. It is worth mentioning that TDE is
mostly supported in the enterprise versions of these databases such as MySQL
while many applications use the free and open-source variations.

The need for advanced pragmatic tactics to protect data in use. Client-side
encryption is one of the prominent approaches to protect data. In other words,
the aim is to perform data encryption at the client side, either in the datacenter
of software providers or client applications, outside of the infrastructure of
cloud providers. Therefore, cryptographic keys should never be transmitted
to the untrusted environments. Among the SQL databases, PostgreSQL offers
client-side encryption. However, to make practical systems, such a security
architecture does not allow certain functionalities like search or computing on
data in a PostgreSQL instance running in the cloud, because the client-side
key management renders the server-side operations useless. This happens due
to the absence of cryptographic keys and the lack of search indexes. Another
example is the Amazon DynamoDB Client which ensures data protection in
transit and at rest, but it falls short in complex cloud-side data operations.
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In brief, businesses require protected outsourcing of sensitive data to untrusted
environments, and at the same time they need to be able to perform search and
computation over encrypted data.

Secure search over encrypted data. The cryptography community has been
conducting research for more than two decades on pragmatic encryption
constructions, generally known as searchable encryption (SE). These schemes
enable search over encrypted data by producing cryptographically secure search
indexes. These schemes generally enable cloud providers to search for user-
requested keywords on encrypted data without knowing the content of the queries
and the plaintext data. The secure index typically reveals no information (or
formally defined leakage) about the content of search words and the data itself.
These schemes are quite diverse in terms of security, performance and query
expressiveness. For example, there exist symmetric SE schemes that support
equality search as well as boolean queries. More practical, albeit less protective
mechanisms, are based on property-preserving encryption (PPE), such as
deterministic encryption (DET), order-preserving encryption (OPE) and order-
revealing encryption (ORE) schemes. In brief, each scheme guarantees a certain
level of security and offers specific functionality at a particular performance
cost.

Computing on encrypted data. To perform different aggregation queries, such
as a request to calculate average heart rates or body mass index (BMI) over
a population within a dataset, the computation should be done within, or
as close as possible to the database. However, to satisfy the data protection
requirements, cryptographic keys should not be transmitted to the cloud provider
infrastructure. Researchers and practitioners developed advanced encryption
primitives to achieve this goal by introducing homomorphic encryption (HE).
The HE schemes encrypt data in a way that their underpinning mathematical
properties enable the applications deployed in the cloud to perform certain
operations directly over encrypted data such as addition or multiplication. There
are different flavours of such schemes. For example, some schemes only offer
the addition functionality such as Paillier [159], and others only multiplication
like ElGamal [64]. Somewhat HE (SHE) and Fully HE (FHE) offer some
combination of both at the cost of performance (e.g., BGV [31] and TFHE [52]).

In a rapidly-changing computing infrastructure landscape, businesses face several
challenges in the context of cost-efficient and secure outsourcing that will
require further research. The next sub-section outline the challenges that this
dissertation investigates to address.
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1.3 Outsourcing computation and data: challenges

In this dissertation, we take an application-driven approach to identify the key
challenges for outsourcing computation and data to the cloud. We therefore
present five real-world application cases (see Table 1.1), three in the context
of outsourcing computation (A1-3) and two in the context of outsourcing data
(A4-5) to the cloud.

Challenges for outsourcing computation. In aeronautics and automotive,
engineers use software-based workflows for simulation and optimisation of
complex designs. The first two application scenarios (A1 and A2) are related
to such systems. These types of engineering workflows are executed by special
engines, e.g. Optimus [185]. These engines typically orchestrate a task given
some input values for a chain of engineering applications. For example, such
workflow engines are capable of running multi-disciplinary design optimisation
techniques by automating computer-aided design (CAD), computer-aided
engineering (CAE) and proprietary software. There are a number of challenges
to execute these workflows on the cloud.

C1 Long-running execution: The execution of these workflows typically takes
minutes to days. These workflows are not deadline constrained; however,
for example, a quasi-exhaustive search in a large set of possibilities for
optimising the hinge system of an aircraft rudder should run faster. This
allows the engineers to produce solid optimisation and simulation results
by performing more experiments. This is achievable by improving the
underlying computing infrastructural components.

C2 Repetitive deployment and iterative execution: These optimisation
experiments are subject to retuning and redeployment. For example,
if the workflow outcome is not desirable, engineers typically re-run the
workflow with different input data or with other optimisation techniques.
This often occurs at different points in time, and as a result, for economical
reasons, the cloud components should be decommissioned and instantiated
frequently. For engineers without expertise in cloud operations, the
management of such large-scale setups is a complex and cumbersome
process.

C3 Non-trivial and efficient composition of resources: Selecting the right
types and amount of resources for computation, storage and networking is
not a straightforward task. For example, collocating compute-intensive
engineering tools on the same VM hinders the performance, which results
in the slow overall execution of the workflow. And most importantly, the
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Application case Challenge scope

A1 Aircraft rudder simula-
tion and optimization

Composing optimal cloud resources
[C1, C2, C3]

A2 Electrical wire harness
simulation

Composing optimal cloud resources
[C1, C2, C3]

A3 Job processing microser-
vice and FaaS

Slow and inefficient container bootstrap-
ping [C4]

A4 Electronic health record
software

Development and integration complexity of
protection techniques regarding search and
computing on encrypted data
[C5, C6, C7, C8]

A5 Invoice management soft-
ware

Development and integration complexity of
protection techniques regarding search and
computing on encrypted data
[C5, C6, C7, C8]

Table 1.1: Overview of the challenges faced in outsourcing computation and
data to the cloud providers stemming from various real-world application cases.
A3 is an application deployment pattern used in cloud-native application cases
and not particularly an application case on its own.

execution behavior of these domain-specific tools is heavily dependent
on the workflows and their input parameters. The main objective is to
increase the speed of such experiments such that engineers are empowered
to rapidly perform iterative runs of their experiments.

Therefore, a smarter, history-driven and controllable approach is required to
automate the cloud infrastructure in a software-defined fashion.

To further improve the efficiency of the cloud-based software systems, computing
components should be instantiated as quickly as possible. For example, in the
third application case (A3), the job producers place tasks on a queue, and
based on the queue load and the required delivery deadline, a number of
workers are instantiated in order to process the tasks. The delay caused by
the time to bootstrap computing components has an impact on applications
with deadline-based Service-Level Objectives (SLO). In the function as a service
(FaaS) architecture, likewise, when a function is called, an instance of the
function should be launched rapidly to mitigate SLO violations. As mentioned
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in the previous subsection, practitioners use lightweight OS-level virtualisation
techniques such as Docker containers to tackle this problem; however, this is
still not sufficient for most enterprise applications, especially for the FaaS case.

C4 Cold start problem: Based on different workloads, upon each function
call or elastic scaling of workers, there is a latency which is known as
cold start. The cold start problem is caused by the time to (1) bootstrap
containers, (2) prepare the software environments, and (3) initialise the
user code. And, it has a considerable impact on most applications [33, 107].
Related work has introduced various techniques to reduce this latency by
using snapshots, lazy fetching of Docker images, and container queues.
However, most techniques are concerned with different tradeoffs. For
example, queue-based approaches pre-launch various pools of containers in
advance to reduce the cold start latency at the cost of excessive memory
duplication. Therefore, further optimising the infrastructure, in particular
using the industry-driven de-facto container orchestration frameworks like
Kubernetes, is still an open problem.

These challenges (C1–4) have emerged from the aforementioned application
cases (A1–3), covering two large classes of software systems that the industry
has been aiming to host and run on the cloud.

Challenges for outsourcing data. Healthcare providers such as hospitals use
cloud-based software to store, retrieve and query patient records and other
medical data (application case A4). This type of software is often offered by third-
party software service providers. Similarly, financial organisations like banks
use billing services to streamline their invoicing workflows (application case A5).
Billing software service providers use the cloud for the generation, processing,
and storage of documents. In both application cases, clients own sensitive data
which is supposed to be processed, stored, and queried by service providers.
These providers typically use cloud-based storage systems. As explained earlier
in this chapter, cloud providers are not within the trust boundaries of such
application scenarios. To protect sensitive data using advanced data encryption
in a pragmatic way to preserve utility, various protection schemes have been
presented by the research community. Integration of these techniques into
real-world systems has introduced several challenges.

C5 Diversity of protection schemes: There is no one-size-fits-all cryptographic
scheme that maximizes all three aspects of the security, performance,
and functionality trade-off. Tactics enabling secure search, in particular
searchable encryption, are quite diverse. For example, encrypting the
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whole database (AES256) without searchability in mind provides us with
a high degree of security but falls short of performance. Some tactics
leak less information than others; among them, there are some with sub-
linear search complexity. Each of these schemes enables different search
functionalities (e.g. equality, conjunction, disjunction, etc.) and aggregate
queries (e.g. sum and average). Therefore, it is not possible and trivial to
choose a general-purpose tactic.

C6 Complex implementation: The underlying concepts and implementation
details of these cryptographic constructions are complicated for application
developers most of the time; in other words, choosing the right scheme
as well as a secure and correct implementation is prone to mistakes. For
example, developers might overlook side-channels in their implementations,
or they use unauthenticated modes of symmetric encryption only because
developers heedlessly copy code snippets from the web [68]. In the scope
of the encrypted search, it is not hard to build searchable encrypted
databases that are susceptible to almost full recovery attacks using
frequency analysis [148]. It is shown that software developers without
cryptography expertise most likely make wrong choices [24, 147]. Therefore,
both the implementation of the cryptographic constructions and also the
API usage are complex and error-prone tasks.

C7 Complex integration and crypto agility: Integrating data protection tactics
in the form of libraries to heterogeneous and polyglot software, e.g.,
microservice architectures, is prone to mistakes because such systems
are developed using various ecosystems of programming languages.
Furthermore, developing and incorporating new cryptographic schemes
in an existing software stack is not a trivial and straightforward task
for security experts. In fact, in this scope, the ability to plug and play
cryptographic schemes is an important aspect since new constructions
with new properties are being presented frequently. Potentially, future
techniques or bug fixes can unlock new security properties, performance
improvements and functionalities. Therefore, rigid software architecture
complicates the extensibility of software systems.

C8 Viability of the missing functionalities in existing storage systems: Most
schemes, such as homomorphic encryption or searchable symmetric
encryption, require extra functionalities to be available within the database
or as close as possible to the data. For example, to perform additive
aggregations homomorphically in the Paillier cryptosystem [159], cipher-
text values are required to get multiplied. Next to that, to perform
a search using a token against an encrypted index, existing database
index techniques are useless. The research community has presented new
storage systems such as CryptDB [166], Blind Seer [160], EncKV [207],
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HardIDX [70], and so on. However, these systems are either custom or
designed with rigid architecture without extensibility in mind. Therefore,
no attention has been paid to cryptographic agility.

These challenges (C5–8) have emerged from our healthcare and FinTech
application cases (A4 and A5) where software service providers aim to store
sensitive data like medical records or customer invoices on cloud-based storage
systems.

To summarise, outsourcing computation to the cloud is challenging for
distributed applications such as engineering workflows due to the complexity
of composing optimal cloud resources. Moreover, for cloud-native applications
that require elastic scaling of computing resources, the cold start problem can
cause SLA violations. Therefore, this class of applications require minimal
bootstrapping time such as the case for application containers in the Kubernetes
orchestration framework. Furthermore, outsourcing data in a protected fashion
comes with several challenges in the scope of development and integration
complexity of protection techniques for software developers and security experts.

1.4 Goals and research approach

This dissertation focuses on challenges that emerged from distributed software
deployment efficiency and data security for the cloud in an effortless, efficient,
reliable, secure and pragmatic way. Consequently, the research approach is
composed of (1) studying existing research, (2) incepting and developing new
techniques, and (3) evaluating and validating the approaches in industrial
application cases. This dissertation advances the state of the art by introducing
new methods and middleware platforms to enable compute-intensive software
systems to run in the cloud. To achieve this, the overall research goal can be
broken up into the following goals:

G1 Infrastructure agility and efficiency. We define cloud infrastructure agility
as an attribute of a platform that offers customisability at different levels
of granularity (e.g. software colocation, VMs, CPU, Memory, etc.). And
most importantly, it should be customisable through orchestration software
tools. Our key sub-goals are:

(a) Automated and controllable capacity planning and deployment of
engineering workflows on the cloud: Infrastructural agility allows
clients to perform horizontal scaling, vertical scaling, software co-
location, dynamic storage and network allocation, and so forth. The



14 INTRODUCTION

high degree of customisability typically results in usage complexity.
We aim to abstract away this complexity and facilitate novice and
expert application developers (in this case engineers) to employ
efficient computing infrastructure for their applications at hand;
furthermore, our end optimisation goal is to automate the entire
process as much as possible.

(b) Low-latency horizontal scaling of computing resources for applications
with deadline-driven Service-Lavel Objectives (SLO). Our goal is
to have a better understanding of the industry-standard container
orchestration frameworks as well as the existing cold start mitigation
techniques. The end goal is to improve the startup time of application
containers; this goal has an impact on applications with deadline-
driven SLOs or serverless computing.

G2 Abstractions for complex and distributed protection tactics. Middleware
systems typically aim to abstract away complex concepts, error-prone
implementation, and configurations. This is mostly achieved by
introducing certain abstractions for simplicity, usability, and configurability
of those underpinning concepts. Our key sub-goals are:

(a) Enabling data access middleware to search and compute over
encrypted data. Our main goal is to present new abstraction models
for non-functional requirements such as data security. We aim to
enable application developers to persist sensitive data on the cloud
in an encrypted form and yet be able to perform certain operations
such as search and aggregation.

(b) Improving crypto agility. The ability to plug and play cryptographic
schemes depending on their evolution in time, or switching between
protection techniques at run time is called crypto agility.

G3 Reusability of the approaches. The aforementioned challenges can be
addressed in a domain-specific approach with tailor-made architectures.
However, our goal is to present reusable designs based on middleware-
oriented approaches, through which application developers, domain experts
in general, would be able to take advantage of our contributions in a
reusable and modular way.

To achieve these goals in this dissertation, we investigate the feasibility
and applicability of adaptive and reflective middleware and infrastructure
architecture. Adaptation is achieved through reconfigurable architecture, and
the key property for reconfigurability of an adaptive architecture is openness.
Typically, not all aspects of a system are realised to be configurable. The
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openness and configurability of the architecture are feasible through reflecting
these aspects via meta interfaces.

In the scope of goal G1, an adaptive middleware architecture enables software
systems to adapt their structure, behavior, and resources based on certain
conditions. For example, a software system that runs an engineering workflow
in the cloud does not reflect certain non-functional aspects such as resources
and deployment components. In this context, to spin up efficient and tailor-
made infrastructure for such workflows, these concepts that inherently exist in
the underlying layers of the systems should be reflected through middleware
platforms. Therefore, they should become first-class citizens in our systems
through reification. Our goal is to present new reflection meta models and
reuse existing ones at the infrastructural level. This effort enables reflection
at different layers from workflow components to cloud resources. In goal G2,
we investigate a reflective architecture for the data access middleware, through
which the behavior of the middleware itself can be reconfigured at runtime.

Research approach. This dissertation takes an application-driven approach
to address the challenges listed in Section 1.3. In high level, the main idea is
to abstract away complex concepts and functionalities in a reusable layer that
is applicable to a large class of application cases. To achieve this, this thesis
focuses on middleware solutions with the aforementioned research goals in mind.
The research approach can be boiled down to the following steps.

1. Driven by industrial application cases. Our approach targets real-world
applications from various domains of industry. The first step is to perform
requirement analysis to understand the challenges faced by different
stakeholders such as business owners, software developers, users and
customers of these applications. The application cases used in this thesis
are listed in Section 1.3 and are primarily based on a European and an
ICON research project, namely ITEA3 IDEaliSM [104] (application cases
A1 and A2 for outsourcing computation) and SeClosed [100] (application
cases A4 and A5 for outsourcing data).

2. Leveraging state of the art and proven technologies. In this thesis, we
leverage the existing research and state-of-practice technologies to advance
the state of the art in cloud computing and data access middleware. In
particular, we used and contributed to the de-facto cloud computing
infrastructure such as OpenStack and Kubernetes. We developed new
ideas built upon the seminal contributions of the research community such
as searchable encryption, homomorphic encryption, reflective middleware,
and various cold start mitigation techniques (application case A3).
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3. Validated by development of prototypes. To validate the new approaches
and the goals of this thesis, we developed software prototypes in
collaboration with the industry partners. Our goal was to investigate
the feasibility of the contributions and understand the advantages and
shortcomings of the contributions. One of the main focuses of our
implementations was on the reusability aspect to meet various goals
including G3 regarding reusability.

4. Evaluated extensively. Each software artifact has gone through functional
validation and extensive evaluation to measure the impact and effectiveness
of the claims in terms of performance. The performance evaluations
were composed of various series of experiments based on evaluating the
techniques on a standalone basis, based on application cases, or measuring
the overhead.

1.5 Contributions

The key contributions of this thesis are summarised in Table 1.2. Fig. 1.1
illustrates the overview of the contributions. The general goal is to facilitate the
outsourcing of the data and computation for various applications, that require
pragmatic data protection and deployment efficiency, to the cloud through our
middleware framework (depicted in grey).

Contribution 1. Reducing cold starts during elastic scaling of containers
in Kubernetes. In this contribution, we investigate the existing and new
techniques for improving the agility of modern computing infrastructure for
cloud-native applications, namely microservices with deadline-based SLOs.
More precisely, the state of the art presents several techniques to mitigate
the cold start problem. In the context of Kubernetes, the de-facto container
orchestration framework in industry, we thoroughly investigate the impact of
two of these approaches: layered-based library sharing and pools of reusable
network containers. Kubernetes operates based on declarative configuration
management that changes the state of the system through various control loops.
We present an imperative approach to improve the speed, and combine it with
the two cold-start mitigation techniques. The key findings of our investigation
are:

• The layered-based library sharing approach results in a large reduction in
the startup time of application containers.
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Figure 1.1: Overview of the contributions, goals, and challenges of this thesis.
All software components situated below the dashed line are within the cloud
provider’s infrastructure. To outsource the computation of the engineering
workflows, the InfraComposer middleware is contacted (see Chapter 3). The
middleware composes and deploys the required cloud resources as a deployment
plan with the help of a cloud orchestrator. The underpinning system and
workflow resources are monitored, and the monitoring data is fed back to
the middleware for future deployment optimisations. In Chapter 2, depicted
in light orange colour (yellow), we combine three techniques to address the
cold-start problem in Kubernetes. The cold-start latency affects the agility
of auto-scaling systems. In Chapter 4, to enable applications that work with
sensitive data, DataBlinder gateway offers regular database operations to the
software developers, and under the hood, it incorporates distributed protection
tactics for computing and searching over encrypted data.

• Pre-creating network containers has a greater impact when multiple
application containers are started in parallel.
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Contribution Challenges Goals

Cold start
mitigation
techniques
(Chapter 2)

C4 Cold start problem G1.b Low-latency horizontal
scaling of computing
resources for applications
with deadline-driven SLOs

InfraComposer
middleware
(Chapter 3)

C1 Long-running
execution

C2 Repetitive
deployment & iter-
ative execution

C3 Non-trivial & ef-
ficient composition
of resources

G1.a Automated and controllable
capacity planning and de-
ployment of engineering
workflows on the cloud

G3 Reusability

DataBlinder
middleware
(Chapter 4)

C5 Diversity of
protection schemes

C6 Complex
implementation

C7 Complex
integration &
crypto agility

C8 Missing functionali-
ties in existing
storage systems

G2.a Enabling data access middle-
ware to search and compute
over encrypted data

G2.b Improving crypto agility
G3 Reusability

Table 1.2: Overview of the challenges and goals per each contribution

• The imperative configuration management introduces startup time
determinism and predictability, which makes the computing infrastructure
more reliable for SLA-driven applications.

Contribution 2. InfraComposer: Policy-driven adaptive and reflective
middleware for the cloudification of simulation and optimization workflows.
The second contribution of this dissertation is InfraComposer, a reflective
and adaptive middleware that enables and manages smart, adaptive workflow
deployment, scaling, and execution in the cloud. It streamlines the workflow
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deployment in the cloud using a step-wise process by leveraging domain-specific
knowledge about the tools. More concretely:

1. The middleware presents a deployment planning approach based on the
annotation-driven resource reservation. Using these annotations, provided
by engineering domain experts, an initial deployment plan is generated
and deployed.

2. Through performing deep inspection of running tools, InfraComposer takes
a history-driven approach to reconfigure the deployment plans adaptively
based on the execution history.

The adaptive scaling and reconfiguration are driven by policies that can reason
about the execution history. We therefore form a MAPE-K loop [110], which
stands for monitoring, analysis, planning, execution and knowledge. To realise
this process, we also present a reflective architecture with meta-models aiming
to reify the key architectural, execution and resource utilisation concepts. These
contributions are validated and evaluated with industrial use cases and scenarios,
primarily in automotive and aeronautics in the frame of the European project
ITEA3 IDEaliSM [104].

Contribution 3. DataBlinder: A distributed data protection middleware
supporting search and computation on encrypted data. The third contribu-
tion of this thesis is DataBlinder, a distributed data-access middleware that
encapsulates the complexity of the protection tactics. It enables software service
providers to securely and in a configurable manner outsource sensitive as well
as non-sensitive data to the cloud. The core contributions are as follows:

• The middleware enables the adaptive selection of data protection tactics
for software developers through an abstraction model. This model enables
software developers to request their desired protection level and types of
queries at the field-level granularity. This approach can be implemented
by annotating the database schema and potentially persistence entities
demarcation. In the tactic selection phase, the right implementation is
loaded at runtime based on the security policies.

• The architecture of the middleware is extensible and pluggable, in the sense
that it is possible to introduce new protection tactics by security experts
without cumbersome integration efforts. To achieve this, we present an
abstraction model that reifies leakage profiles, performance metrics, and
operations. The architecture is based on the service provider interface
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(SPI) pattern [176], and we employed it in a distributed architecture with
both a trusted and untrusted zone. We prototyped several searchable and
homomorphic encryption schemes as a validation of the system.

• We investigated the possibility of dynamic deployment of User Defined
Functions (UDFs) in major NoSQL databases. The main idea is to extend
the existing database functionalities without any modification to the source
code of databases, e.g., to support server-side homomorphic operations.
We developed two prototypes for MongoDB and Cassandra to validate
that the idea is practically feasible. However, our evaluations show that
cryptographic UDFs, that run within database engines, do not guarantee
the best performance for all NoSQL databases. We performed an analysis
regarding this contribution in this dissertation.

Our prototype is implemented as a data-access gateway in a distributed
micro-service architecture. Next to the overhead of cryptographic schemes,
DataBlinder causes only 1.4% overall throughput loss. These three contributions
are crucial avenues for research to foster crypto agility in the domain of
outsourcing data to untrusted environments from the software engineering
and middleware perspective. These contributions are validated and evaluated
with industrial use cases in healthcare and FinTech in the frame of the ICON
project SeClosed [100]. Our approach has been reviewed and validated by the
AWS Cryptography team.

1.6 Outline of the thesis

The remainder of this dissertation is structured as follows.

Chapter 2 presents and evaluates the first contribution. In this chapter, we
present the cold start problem and a thorough evaluation of three techniques for
bootstrapping the computing infrastructure. This work has been published in
the 36th ACM/SIGAPP Symposium On Applied Computing (SAC 2021) [94].

Chapter 3 presents, validates and evaluates the second contribution. In this
chapter, we present a policy-based, history-driven, and adaptive middleware
for the deployment of engineering workflows. This work has been published
in the Journal of Systems Architecture (JSA) [16], as the extension of two
prior publications in the proceedings of the 16th Workshop on Adaptive and
Reflective Middleware (ARM 2017) [15], and the NAFEMS European Conference
(2018) [133].
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Chapter 4 presents, validates and evaluates the third contribution. In this
chapter, we present a data-access middleware for secure outsourcing of data
to the cloud platforms. This chapter is primarily based on our publication
in the proceedings of the 20th ACM/IFIP/USENIX International Middleware
Conference Industrial Track (Middleware Industry 2019) [17]. This chapter
further evaluates the impact of dynamic deployment of user-defined functions.
The author of this dissertation designed, prototyped, and performed an analysis
as a co-author in a paper that has been published in the Journal of Information
Systems [168].

Chapter 5 concludes this dissertation by summarising the contributions. This
chapter further discusses the limitations of the contributions and outlines the
future research avenues in this context.





Chapter 2

Reducing cold starts during
elastic scaling of containers in
Kubernetes

This chapter presents three techniques in the context of Kubernetes aiming at
reducing cold starts during elastic scaling of containers. The delay caused by
the time to bootstrap a container, often known as cold start, has an impact
on applications with deadline-based Service-Level Objectives (SLOs). Our
research combines and evaluates these techniques: (i) pre-creation of network
containers, (ii) using container images that enable sharing of linked libraries in
memory and (iii) extending the declarative configuration management approach
of Kubernetes with imperative configuration for creating multiple application
containers in parallel. A prototype of the approach is implemented and tested
on a Java-based Spring Boot application where the cold start problem occurs
due to various library dependencies.

Our findings illustrate that the use of containers that allow for library sharing
already has a large, positive impact when starting up a single container.
The pre-creation of network containers in combination with imperative
configuration enables the application to meet deadline-driven SLOs without a
non-deterministic delay that appears in Kubernetes when multiple containers
are created in parallel. We conclude that the use of container images that allow
for library sharing is a must for all applications that require fast container
start-ups in Kubernetes. Pre-creation of network containers when combined
with imperative configuration also has a positive impact on SLO compliance

23
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during elastic scaling of containers.

This chapter is based on a publication at the 36th ACM/SIGAPP Symposium
On Applied Computing (SAC 2021) [94]. The remainder of this chapter is
structured as follows. Section 2.1 introduces the cold start problem and provides
an overview of the state of the art. Furthermore, it outlines our contributions
and findings in the scope of Kubernetes. In Section 2.2, we present the required
background, and in Section 2.3, we outline related work on containers and the
cold start problem. Then, Section 2.4 discusses how reusable network containers,
library sharing and imperative configuration can be realized in Kubernetes.
Subsequently, Section 2.5 presents our evaluation methodology, experiments
and the results. Finally, Section 2.6 concludes our research and summarise our
findings.

2.1 Introduction

New cloud computing execution models such as serverless computing have
become popular recently [11]. Software providers offer their services through
microservices or purely serverless architecture. In that regard, one of the
emerging and widely adopted paradigms of delivering software is the use of
OS-level virtualization such as containers [184]. To facilitate managing an
application as a distributed set of containers, container orchestration frameworks
are used. The popular examples are Docker containers and Kubernetes [20].
Kubernetes has pioneered in declarative configuration management, where a
control loop detects differences between a desired and actual system state, and
a policy-rich scheduler that takes into account expressive placement constraints
for placing containers on a cluster of worker nodes.

Automatic scaling of functions is an inherent feature of serverless computing [11,
107]. Upon each function call, one or more containers need to be started or
elastically scaled out based on different workloads. Even though containers are
considered to have faster startup times compared to traditional virtual machines,
the latency caused by the time to (i) bootstrap containers, (ii) prepare the
software environments, and (iii) initialize the user code has an impact on some
applications [33, 107], especially multi-tenant services with strict service level
agreements (SLAs). This problem is called cold start. It sometimes takes
seconds or minutes to have a container and the application up and running.

To reduce this cold start latency, various techniques have been already
introduced, e.g. using snapshots [39], lazy fetching of Docker images [54]
and container queues [122, 144, 136]. However, there are always trade-offs. In
particular, the queue-based approaches mostly sacrifice memory to obtain a
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faster start-up time since containers are pre-launched. In the context of the
serverless middleware OpenWhisk, Mohan et al. [144] improved this deficiency
by pre-creating and caching a pool of reusable networking endpoints, namely
network containers. When a function container is created, an existing network
container gets bound to it. This approach results in 80% reduction in execution
time in comparison to cold queues and several orders of magnitude reduction in
memory footprint. However, this technique has not yet been evaluated in the
context of Kubernetes.

Moreover, in a serverless setting, or auto-scaling in general, software
dependencies are redundantly loaded in memory when containers are replicated.
In particular, recent research has shown that replicated containers can
share common libraries in memory, provided that the used container image
encapsulates the libraries in separate image layers. [67]. This technique has
also been reported to reduce startup times as well [197].

Contributions. We extend Kubernetes with an imperative configuration
management approach to reduce the cold start problem when auto-scaling
containers in parallel.

We have found that in Kubernetes a non-deterministic delay, or more specifically
a varying delay, appears in container start-up times when creating multiple
application containers in parallel on the same node. The cause of this delay is
due the declarative configuration management approach of Kubernetes where
various controllers act upon differences between desired and actual system state.

It has already been shown before that declarative and imperative configuration
management are complementary techniques [32]. Our imperative approach uses
a script to create multiple containers in parallel. However, it builds upon the
technique introduced by Mohan et al. [144] to still benefit from the advantages of
Kubernetes’ declarative configuration management approach and its policy-rich
scheduler. More specifically, to realize a queue of reusable network containers in
Kubernetes, we create a pool of empty pods (i.e. pod is a group of containers).
Each pod comes with a network container since network containers can only be
instantiated in a pod. To scale out the application in an imperative fashion, our
scaler selects one or more of these pods and it launches a number of application
containers by injecting these into the selected pods.

Our research goals are threefold:

1. The first goal is to see whether creating a pool of network containers (also
called pause containers) in advance has a positive effect on the cold start
problem in Kubernetes.

2. The second goal is to investigate the impact of container-based library
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sharing on the cold start problem when combined with network containers
technique in Kubernetes.

3. The last goal is to compare imperative and declarative configuration
management along with the two aforementioned techniques. The
imperative approach creates multiple containers by means of an imperative
script, whereas the declarative approach employs a control loop with a
policy-rich scheduler.

A prototype of the approach is implemented and tested on a Java-based Spring
Boot application [187] where the cold start problem occurs. This application
is a simple job processing microservice, which has a variable amount of users.
The intention is to test the effectiveness of the approach with multiple users
submitting jobs at the same time. As a validation, we compare our approach
with using the default declarative approach of Kubernetes for increasing or
decreasing the number of replicated Pods.

Findings. We have evaluated our approach with fluctuating workloads. We
could deduce from the experiments that using container images that support
library-sharing has the greatest impact on the “cold star” problem. Library
sharing also had a positive but small effect on the start-up of multiple containers
in parallel. After all, this provides an extra reduction in time for starting up
application dependencies (e.g. the Java Virtual Machine (JVM) and Tomcat
server). Finally, the effectiveness of the network container queue is limited, but
in conjunction with the imperative approach, it results in faster boot time of
containers since it can be done in parallel. The imperative approach further
enables the application to meet SLA targets without a non-deterministic delay
that appears in the declarative approach when multiple Pods must be created
at the same time due to concurrent user requests.

2.2 Background

In this section, we introduce: (i) Kubernetes and some of its underpinning com-
ponents, (ii) the differences between declarative and imperative configuration,
and (iii) a brief definition of the cold start problem in the context of containers.

2.2.1 Kubernetes

Kubernetes is a container orchestration framework commonly deployed and used
by researchers and practitioners. It facilitates the deployment, (auto)scaling and
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management of container-based applications through declarative configuration
files. A pod is a group of containers that share storage and network
resources [113]. Pods are the smallest unit of deployment in Kubernetes. A
deployment is used to get a pod or a ReplicaSet of a pod to a certain state.
The deployment controller is responsible for changing the current state to the
requested state. CPU and memory of compute resources (containers or pods)
can be managed by guaranteed resource requests and maximum resource limits.

Pause containers. Each pod has a pause container. A pause container is
responsible for the creation of a shared network and a namespace for the other
containers in the pod [120]. If any container within a pod fails, the entire pod
does not restart thanks to pause containers. This is because this container
ensures that the network namespace and PID namespace remain. We use the
terms pause and network container interchangeably throughout this chapter.

Internal components. In Kubernetes, the control plane, which manages
the worker nodes and pods, is composed of schedulers, API servers, and an
etcd database. Schedulers are responsible for suitable pod placements based on
different scheduling decisions. API server exposes the Kubernetes functionalities.
The etcd database is a consistent and highly-available key-value store as a
backing store for all cluster data [113]. The worker nodes host pods. Kubelet is
an agent on each node responsible for making sure that containers are running
and healthy [113].

2.2.2 Declarative and imperative systems

Modern software systems and infrastructure can be configured and instantiated
by code. In general, similar to two major programming paradigms, namely the
declarative and imperative paradigms, the state of a system can be changed
using the declarative and imperative approaches. For example, a software
service is deployed and run on 2 containers on a physical node. Assuming that
the service workload reaches a certain threshold, we therefore aim to deploy
and run 4 more instances of the service; however, the capacity of the physical
node is insufficient for this scale-out request. In a declarative infrastructure
configuration system, we provide the orchestration system with our desired
state, which is 6 containers of this service. The orchestrator, under the hood,
picks a new physical node, sets up the networking components, instantiates the
containers, and makes sure our system state ends up with 6 containers. However,
in an imperative system, the client is supposed to instruct the orchestrator
for each of these steps. The former approach abstracts away the complexities,
but the latter approach enables the infrastructure to benefit from a degree of
customisability.
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Declarative approach. In a declarative system, the client is aware of a
desired state, and the system is provided with a representation of this state,
through which it can come up with a set of instructions to reach that state from
the current state [194]. In Kubernetes, this approach is managed by various
controllers. A representation of the pods is sent to the API server. After a
few security checks, it stores the resource in the etcd database. The scheduler
afterwards performs pod placement process based on this information. Based
on scheduling decisions, the kubelets are contacted to start the containers. If
more pods are planned to be started, that does not happen simultaneously.

Imperative approach. In an imperative system, the client is aware of a set of
instructions to bring the system to a desired state [194]. Kubernetes operates
as a declarative system through the API server. An imperative approach would
bypass many steps such as scheduling and operate by communicating directly
with the container runtime (e.g. the Docker daemon) on the nodes. That means
pods can now be created in parallel if it is required.

2.2.3 Cold Start

When a serverless application serves an invocation request, or a microservice
scales out due to a particular workload, one or more containers get created and
started. To achieve this, the system requires to (i) bootstrap containers, (ii)
prepare the software environments, and (iii) initialize the user code [33, 107].
This is called cold start. The execution of these steps might cause latency due
to memory footprint, runtime, code package size, and more [38].

2.3 Related Work

We present the related work in two groups: (i) rapid deployments where the
focus is on speeding up the container ecosystem, and (ii) queue-based approaches
where different techniques based on pools of containers are researched.

2.3.1 Rapid deployments

Caching and snapshots. Cadden et al. [40] present a technique based on
dependency planning by introducing two caching solutions to improve the
startup time of a task. In brief, their cache-aware scheduler schedules tasks by
creating containers on nodes where there is an exact container image cached, or
a sub-layer of it. Although unikernels are inherently different in comparison
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to Docker containers, Fu et al. [69] introduce an approach based on creating
snapshots of unikernels ready to execute functions. Upon a function invocation,
unikernels request the snapshots of this function to speed up its invocation.

Lazy image loading. In this approach, it is shown that only a small part of the
container images (e.g. 6% in Docker images [90]) is enough to start a container,
and the rest can be loaded lazily. FogDocker [54] presents a base image, after
an analysis process on an image, with the essential files required to boot the
container. The rest of the original image will be downloaded asynchronously.
However, it is hard to mitigate application crashes at runtime when a required
file is not yet fetched. Likewise, Slacker [90] uses the same technique mixed with
layer-based snapshots and lazy cloning, i.e. this means that if Slacker wants
to clone a particular layer of a Docker image, it only clones that specific layer
and not the whole image. The advantage of this approach is that the pushing
and pulling of containers run more smoothly, and as a result, the start-up time
is reduced. A small trade-off is that the full runtime of applications becomes
longer in experiments with a large load.

These techniques are not always compatible with each other. Some of the
approaches based on Docker images are not always feasible in every situation,
e.g. the Lazy approaches [54, 90], where we do not directly download all files
from an image. This can become problematic with large applications that use a
lot of files to operate.

2.3.2 Queue-based approaches

These techniques aim at preparing the infrastructural components (e.g.
containers) as early as possible and keep them in pools. A warm queue of
containers is a queue in which the containers are ready to process clients’
requests. Lin et al. [122] reduce cold start latency by 85% through employing a
pool of warm pods using Knative. However, the pod migration takes 2 seconds
in this approach. Likewise, McGrath et al. [136] use cold queues to monitor the
memory capacity of the worker nodes to start up new containers, and warm
queues to keep track of existing warm containers. The other approach is to
use pre-warmed queues where containers are started but the application is
not yet initialized [192]. However, this technique is appropriate for stateless
applications, especially those that do take much time to initialize, e.g. scripting
languages like Python rather than compiled runtimes like Java and .NET [38].

The warm and pre-warmed queues are effective at the cost of high memory
consumption. Mohan et al. [144] present an approach based on reusable network
containers in OpenWhisk, inspired by pause containers in Kubernetes. In this
way, they reduced the cold start latency by skipping the networking step.



30 REDUCING COLD STARTS DURING ELASTIC SCALING OF CONTAINERS IN KUBERNETES

Chapter 5.2.1 presents a complete overview of the cold start mitigation
techniques at all layers of the infrastructure.

2.4 An imperative approach to cold start

In this section, we present three strategies, namely using (i) a pool of reusable
network containers, (ii) a layered-based library sharing, and (iii) imperative
configuration of application containers, to mitigate cold start problem in
Kubernetes.

2.4.1 Reusable network containers

In this approach, we aim at pre-creating the network infrastructure of application
containers to decrease the cold start time. To achieve this, a queue of warm
network containers can be used. When scaling-out is required and a new
application container must be started, our scaler binds the newly started
container to a warm network container. Afterwards, the network container is
removed from the queue and placed in a hot queue, meaning that it is occupied.
Using the hot queue, the network container can be released and put back in the
network container queue when the application container is no longer required.
That ensures reusability.

In Kubernetes, network containers, also known as pause containers, cannot
be created on a stand-alone basis. To have a queue of pause containers, our
approach is based on creating lightweight pods. Each pod is composed of a
pause container as a result.

Pod injection. When a scale-out request arrives, an application container is
injected to a pod as follows: our scaler controller starts an application container;
it picks an entry from the queue (i.e. the entry includes the pause container
ID, IPC namespace and cgroup of each pod in the queue); it configures the
container to use the network namespace, cgroup and IPC namespace of the
pod; and it places the pod in the hot queue to know that the pod is already
running a worker instance. We call this “pod injection” as an application
container is injected into a pod without using the Kubernetes API, and instead
by communicating directly with the worker nodes.
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2.4.2 Layered-based Library Sharing

Layered-based library sharing is a technique with which external components
and software dependencies of an application are encapsulated in various layers
of container images to mitigate the cold start problem. Other work showed
that library sharing reduces the memory footprint by sharing common portions
of memory between containers [67]. Our hypothesis is that a layered-based
approach has an effect on the startup time of an application. The previous
research uses this technique to reduce the image size. That means if a layer with
the library already exists, it can be used by multiple containers. This basically
makes the container image (e.g. Docker) smaller for the second container, as it
no longer needs to provide the libraries for its applications; therefore, it reduces
the cold start.

Programming languages influence the startup time of applications [132]. For
example, Java applications typically include most dependencies in JAR files. In
a JAR file, there are application classes, libraries, frameworks and a manifest
file. If we work with a large JAR file, we only have 1 layer containing the entire
application. So it is impossible to benefit from library sharing. To speed up the
container image retrieval, a JAR file can be split into multiple layers.

2.4.3 Imperative scaling in Kubernetes

Using an imperative approach in Kubernetes, our scaler communicates directly
with the worker nodes, bypassing the Kubernetes controller components. In
a declarative approach, a state change request (e.g. deployment of a pod) is
processed by Kubernetes API, various controllers and schedulers to implement
a control loop to mitigate unintended states (e.g. a node or container crash).
Moreover, pods are started sequentially and placed one by one. But, our
imperative approach communicates directly with the container runtime (e.g.
the Docker daemon), start the application containers and inject them into the
network pods. Therefore, the entire process can be done in parallel and at the
same time. Our hypothesis is that it considerably improves the application
start-up time when an application requires to scale out.

2.5 Evaluation

We aim to evaluate the effectiveness of the presented techniques, namely (i)
library sharing, (ii) employing a pool of network pods, and (iii) the imperative
approach, to mitigate the cold start problem. We also evaluate how our
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imperative approach affects applications with strict SLO requirements based on
job completion time.

Firstly, a job-oriented microservice application is introduced as our test
application for the experiments. Secondly, we present our research methodology
and the experiments conducted in that regard. Thereafter, we present our
experiment setup and conclude with the experimental findings and their
discussion.

2.5.1 Test application

We perform our experiments on a job processing microservice application (see
Fig. 2.1). The application is composed of three parts: (i) the users who create
jobs and add them to the queue, (ii) the queue where the active jobs are stored
and (iii) the workers who are responsible for periodically checking the queue for
jobs. Users add jobs to the queue. A job is a collection of tasks. When a lot of
users are actively busy and producing different workloads, extra workers can be
added to handle all possible requests. The Queue service and the workers have
been implemented using RESTful Spring Boot in Java based on the Tomcat
server.

Queue Service Worker
PollPush

Figure 2.1: Test application

2.5.2 Experiment Methodology

Methodology. To evaluate the techniques introduced in this chapter, four
deployment variations of the test application, presented in Section 2.5.1, are
employed:

1. DCL where pods are created in a declarative way via Kubernetes and
its policy-based scheduler, i.e. the pause and application containers are
created together.

2. IMP where network pods are created in advance so that we can use them
to inject our application containers, i.e. the injection of these application
containers is done asynchronously by running a script on the node on
which pods are available.



EVALUATION 33

3. DCL + LIB where everything is identical to DCL except now the Docker
image of the application container consists of multiple layers to allow
library sharing.

4. IMP +LIB where everything is identical to IMP but with library sharing
as DCL + LIB.

We employ the Locust [126] load testing tool to allow multiple users to join the
experiments. They register jobs in the queue to start a scaling action. Each
job that is being submitted by a user runs in its own container. We repeat
these workload tests for each of the abovementioned deployment variations of
the test application. Throughout this process, we inspect the occurrence of
different events to measure the duration of: (i) starting the pause container, (ii)
application container startup delay, (iii) starting up the application container,
(iv) starting up the JVM, (v) starting up Tomcat server, (vi) finalizing Spring
Boot startup, and (vii) finishing the first task. We analyze the effect of the
deployment variations on these durations to understand how the different
techniques of our approach affect the cold start problem.

Library sharing validation. Instead of using a large JAR file, we extract 3
layers to reuse in our Docker file. To speed up the build time of the Docker
image, we have placed the layers that change the least, such as libraries, above
the classes. If the dependencies are not changed, then the library layer does not
need to change, resulting in a faster build time. The library layer can also be
easily shared if we want to work with other applications.

No dependency layers
FROM openjdk:8-jdk-alpine
VOLUME /tmp
ADD target/worker.jar app.jar
ENTRYPOINT exec java -jar /app.jar

Layered library sharing
FROM openjdk:8-jdk-alpine
VOLUME /tmp
ARG LIB=target/
COPY $LIB/BOOT-INF/lib /app/lib
COPY $LIB/META-INF /app/META-INF
COPY $LIB/BOOT-INF/classes /app
ADD README.md README.md
RUN apk update java=8u191+
ENTRYPOINT exec java -cp "app:app/lib/*"
"be.kuleuven.WorkerApplication"

To validate that library sharing is properly implemented, we use the pmap and
smaps tools as used in [67]. It allows us to check which libraries are being
used, how much memory they share with the other processes, and obtain more
detailed information about the memory usage. We create two containers with
the same image. We perform this validation once with library sharing and once
without. Our results show that the libraries such as Tomcat, Spring, Avalon,
etc. have been successfully shared in the case with library sharing; however,
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pmap and smaps shows no libraries in the shared memory section in the other
case. We can therefore conclude that we have successfully shared our libraries
with each other in our library sharing Docker container.

Experiment setup. To ensure that the results are comparable, we use the
same environment for all experiments. This environment is an OpenStack-based
private cloud. We created four virtual machines (VMs) where three of them
belong to the Kubernetes cluster while the fourth one is used for load testing.
The operating system of the VMs is Ubuntu 16.04. We used Kubernetes v1.12.
The resource allocation of the VMs is organized as follows: (i) one Kubernetes
master node with 2vCPU and 4GB RAM as the master node of the cluster, (ii)
one worker node with 4vCPU and 8GB RAM. This worker node hosts both
the test application and the scaler that is responsible for deploying the worker
pods, (iii) one worker node monitoring with 2vCPU and 4GB RAM, and (iv)
the load generator node with 4vCPU and 8GB RAM to simulate the load of an
external user submitting jobs.

2.5.3 Experiments

In this subsection, we present our experiments and our findings. We have
performed two experiments:

1. Experiment 1 to measure the total runtime of containers individually (i.e.
1 – 6 containers were created) and understand the impact of the presented
techniques on cold start

2. Experiment 2 to measure the start and end time of 6 containers with 1000
tasks, especially to understand the impact on a scenario where there is a
strict Service Level Objective (SLO) such as job return time

Experiment 1

This experiment includes 6 rounds, and each round has been executed against
each of the deployment variations, namely declarative (DCL), imperative
(IMP ), declarative with library sharing (DCL + LIB) and imperative with
library sharing (IMP +LIB). In the first round, only one container is launched
for one user, in the second round, 2 containers are launched for 2 users, and so
on up to 6 containers/users. We inspect the start-up time of the pods with a
granularity described in Section 2.5.2. We ran each experiment at least 20 times
and then averaged these results. Only 10 experiments have been performed
with the six containers. We also show the standard deviation error bars on
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the graphs in red showing how much the values differ from each other. In our
research, we investigate the extreme cases: Round 1 with one container, and
Round 6 with six containers.

DCL IMP DCL+LIB IMP+LIB
Duration finish first task 2044.70 2130.70 3778.81 3867.10

Duration finalizing spring boot
startup

154.10 169.90 396.57 304.80

Duration starting up Tomcat
server 68230.95 65627.05 39771.05 38769.10

Duration starting up the JVM 15156.50 14801.55 9643.38 9639.75

Duration starting up the
application container

434.55 463.60 436.10 480.85

Application container  startup
delay 1413.20 0.00 1426.57 0.00

Duration starting the pause
container 606.80 0.00 592.71 0.00
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Figure 2.2: The fined-grained start-up times and execution time of (round 1,
container 1) when only 1 container is scheduled to be created

Round 1 (one container). Fig. 2.2 illustrates the first round in which only 1
container has been started (i.e. the results of registering one user). We collected
fine-grained information regarding the startup of this container. We note that
the strategies that use library sharing have a major impact on the boot time
of the Tomcat server as well as when starting a JVM instance. The reason for
this is that the libraries that Tomcat uses are provided with a higher layer in
the Docker image and we therefore benefit from the layer-based library sharing
that we introduced in Section 2.4.2. A small trade-off is the execution time of
the first task with the library sharing strategies. We notice an increase when
the Spring boot is completed.

The imperative approach, in Fig. 2.2, does not seem to have considerable impact
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DCL IMP DCL+LIB IMP+LIB
Duration finish first task 21498.18 19829.33 20608.80 20441.60
Duration finalizing spring boot

startup 171.45 182.89 331.60 371.80

Duration starting up Tomcat
server 66814.09 68945.44 38899.30 39053.90

Duration starting up the JVM 13897.64 14867.89 9097.70 9168.50
Duration starting up the

application container 611.36 1041.78 618.60 997.70

Application container  startup
delay 7660.00 0.00 7503.40 0.00

Duration starting the pause
container

1401.82 0.00 1349.50 0.00
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Figure 2.3: The fined-grained boot-up and execution time of (round 6, container
6) when 6 containers are scheduled to be created

on the whole picture. That is because the Java ecosystem, and most compiled
runtime enterprise languages, are slower at startup in comparison to scripting
languages such as Python and Ruby. However, to figure out the real advantage
of creating the network containers in advance, we zoom in on the bottom
events of this chart regardless of the application deployed within the container.
Fig. 2.4a illustrates a closer look at the container-related startup events. In
this figure, the impact of creating a network container in advance is more
clearly indicated. We can understand, that thanks to the creation of a network
container in advance, we gain about two seconds speedup. This is certainly
an improvement, as it does not depend on the programming language and the
application dependencies. We obtain these results since with the imperative
approach the pause containers were picked up from the pool of pods. Moreover,
the declarative approach typically create the pause containers first and then the
application containers; therefore, there is a delay in between, which is avoided
in the imperative approaches as a consequence. In Fig. 2.4b, we zoom in on
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Figure 2.4: A closer look at Experiment 1 (round 1 and round 2)

the duration of the first task and notice that the standard deviation error bars
overlap. When the standard deviation error bars do not or almost not overlap,
the results are significantly different. In our case, however, we observed that
the durations of the first task completion were not significantly different in this
experiment.

Round 6 (six containers). Fig. 2.3 shows the timings of the different
deployment variations for the sixth round where 6 containers are started for 6
users. We performed the same experiments as in to Round 1, but we seek to see
the differences or correlations with the previous observations in the other rounds.
In this figure, we observe that the library sharing technique continues to have a
major impact on the boot time of the Tomcat server and JVM. The duration of
starting up an instance of the Tomcat server is even almost halved. However,
the time of “finalizing spring boot startup” is doubled, but the numbers are
only in the range of ~150 milliseconds, which is little compared to the benefit
we get from the speedup of the other dependencies (Tomcat and JVM).
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Figure 2.5: A closer look at Experiment 1 (round 6)

In Fig. 2.5a, the startup times from Fig. 2.3 are illustrated separately in which 6
containers (pods) have been started. Here we can deduce that creating network
containers in advance has a minimal impact. However, if we do this together
with an imperative configuration, we notice a great improvement. The advantage
is greatest with successive containers. We notice this especially with container 6
of this experiments. The reason is that Kubernetes needs to wait for all pause
containers and the predecessors to be created; that introduces considerable
delay. More precisely, to create 6 pods, Kubernetes starts with creating the
pause containers one by one. Once all the pause containers have been created,
it starts with creating the application containers one by one. For instance, if we
want to know the total startup time of the 4th pod with the DCL approach,
application container 4 needs to wait till all pause containers (1...6), and the
application container 1, 2 and 3 are created and started. Then, the container
4 can get created and started; by starting up we mean the container not the
application. The only drawback of the imperative approach is that the duration
of "starting up the application container” increases. But it is a small trade-off.
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We can conclude that the imperative approach is considerably beneficial when
multiple containers get started up simultaneously.

Findings. Based on the results of the experiment 1 (see Section 2.5.3), several
findings can be concluded as follows:

1. The library sharing technique has the greatest impact across all
experiments. It resulted in a reduction in the start-up time of the JVM and
the Tomcat server. The only drawback is that the duration of “finalizing
spring boot” is getting longer, but this is very little compared to the
overall improvement.

2. The library sharing technique has a negative impact on the execution time
of the first task. However, the standard error bars overlap, which indicates
that statistically the results of these experiments are not significantly
different. This means that library sharing across multiple experiments
does not negatively impact the execution time of the first task.

3. The approach to pre-create the network containers seems to have a
small impact on cold start when starting only one container. The only
advantage is that we can skip the network creation step. However, the
impact is greater when multiple containers start up simultaneously. The
reason for this is the way Kubernetes creates its pods and containers.
Firstly, it creates the necessary pause containers before the application
containers. As a result, we observe a considerable impact on the boot-up
time, especially with the last container. In the Kubernetes approach,
the last container has to wait until all pause containers and application
containers have been created before it can start its own creation process.
A small drawback with this technique is when several containers are
started simultaneously, the start-up of the application container takes
longer. However, this is again negligible in comparison to the overall
improvement.

Experiment 2

In this experiment, we primarily focus on the start time of the application
containers; creating the network containers in advance does not affect this
experiment. The aims of this experiment are (i) to examine the possible impact
of different strategies on the start and end time of the application, (ii) to realize
which technique is more suitable in case of having service layer objectives (SLO)
such as job completion time, and (iii) to understand the impact of each approach
on the CPU usage. We expect that the strategies that start their containers the
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fastest will also reach their optimal CPU usage faster. We test the techniques
on the aforementioned deployment variations of the test application discussed
earlier.
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Figure 2.6: Experiment 2 with 6 containers

We let six users register in the application simultaneously. After that, each user
sends 1000 tasks to the application. The end time is equal to the time when a
user finished his 1000 tasks. We use Locust to simulate the workload generated
by the users. To determine when the 1000th task was executed, we look at
the logs of the Docker application to extract the time of the 1000th task. The
start and end time of each case are measured in relation to the start time of the
first container. In other words, if container 2 has started three seconds after
container 1, the startup time of container 2 is three seconds.

Impact on the duration of processing all tasks. Fig. 2.6 illustrates that
the imperative approach (IMP and IMP + LIB) starts all 6 containers before
the start of container 2 of the ones with declarative approaches (DCL and
DCL + LIB). In each experiment, the completion times are illustrated as
overlapping dots on each other for all containers. This is due to the asynchronous
creation of the application containers using the imperative approach. Therefore,
it means that the other containers do not have to wait for container 1 to
initiate their own start-up process. Moreover, our library sharing approach has
a positive impact on the end times of this experiment. This impact comes from
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(a) The declarative approach without library sharing

(b) The declarative approach with library sharing

(c) The imperative approach without library sharing

(d) The imperative approach with library sharing
Figure 2.7: CPU usage in Experiment 2

the previously seen benefits of faster boot times for the Tomcat server and JVM
(see Experiment 1).

Meeting job completion time objective (SLO). In Fig. 2.6, the red line
represents the job return time as an SLO. An SLO is an agreement that is
made between the service provider and the customer. The agreement is that
1000 tasks will be performed per container in 1055 seconds. If we look at our
imperative approach, we conclude that this deadline is easily achievable by all
containers. With the declarative approach, this SLO is no longer feasible for the
fourth container. This is because the 4th container has to wait for the creation
of container 1, 2, 3 and all pause containers. We can deduce that our imperative
approach is effective to meet SLO deadlines because these containers can start
up in parallel.

Fastest containers reach optimal CPU usage faster. The cold start
problem also affects CPU usage. This problem causes the CPU usage to
increase steadily as shown in Fig. 2.7a. If we look at the impact of library
sharing in Fig. 2.7b, we can already observe an improvement. We see a straight
rise to the highest point. Fig. 2.7c shows the effect of the imperative approach.
The start-up phase of this experiment shows an improvement in the CPU usage,
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but it eventually fades. This is because this approach is mainly effective for the
start-up of the containers. Finally, we combine these two strategies in Fig. 2.7d,
where the two previously seen benefits are combined. Our CPU usage is now
rising in the beginning and right to its peak.

Findings. Based on the results of the experiment 2, our findings are as follows:

1. The imperative approach further enables the application to meet SLO
targets without a non-deterministic delay that appears in the declarative
approach when multiple Pods must be created at the same time due to
concurrent user requests.

2. These two techniques not only reduce the cold start but also provide
the application with the processing power (CPU) as early as possible,
resulting in a faster overall job completion time.

2.6 Conclusion

We investigated how a queue of reusable network containers, layer-based library
sharing, and imperative configuration management, when combined together,
can improve the cold start problem in Kubernetes. Cold start is a well-known
problem in the elastic scaling of containers, especially in serverless computing.
Sometimes several containers are required to be started simultaneously, and
the applications deployed on these containers are the same or share software
dependencies, increasing the impact of this problem. We evaluated the
above-mentioned techniques extensively in a deadline-oriented job processing
microservice.

Our findings show that (i) the library sharing approach results in a large
reduction in the start-up time of software dependencies (e.g. the JVM and
Tomcat server), (ii) pre-creating network containers has greater impact when
multiple application containers are started in parallel, (iii) the imperative
configuration approach introduces start-up time determinism and predictability,
making this approach more reliable for applications with SLOs such as job
completion deadlines.



Chapter 3

InfraComposer: Policy-driven
adaptive and reflective
middleware for the
cloudification of simulation
and optimization workflows

In this chapter, we present a policy-driven adaptive and reflective middleware
that supports smart cloud-based deployment and execution of engineering
workflows. This middleware supports deep inspection of the workflow task
structure and execution, as well as of the very specific mathematical tools,
their executions, and used parameters. The reflective capabilities are based on
multiple meta-models to reflect workflow structure, deployment, execution, and
resources. Adaptive deployment is driven by both human input as meta-data
annotations as well as adaptation policies that reason over the actual execution
history of the workflows. We validate and evaluate this middleware in real-life
application cases and scenarios in the domain of aeronautics.

This research is based on a publication in the Journal of Systems Archi-
tecture [16] in 2019. Prior to the journal paper, a subset of this work has
been published at the 16th Workshop on Adaptive and Reflective Middleware
(ARM’17) [15] as well as a publication at the European Conference of Simulation
Process and Data Management (NAFESM’18) [133]. The rest of this chapter is

43
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structured as follows. Section 3.1 introduces the overall context and challenges
of deploying and executing engineering workflows on the cloud. Furthermore,
we present a high-level description of the InfraComposer middleware and its
contributions. Section 3.2 presents two motivating scenarios of engineering
workflows and their common patterns. Section 3.4 describes the architecture
and the concepts of the middleware. Moreover, we introduce the meta-models,
policy-driven architecture, and monitoring components. Section 3.5 validates
multiple adaptive (re)deployment scenarios and demonstrates the effectiveness
of the InfraComposer policy-driven architecture. Section 3.3 presents the state
of the art in cloudification of workflows, adaptive middleware, and auto-scaling
techniques. Section 3.6 outlines the limitations and the possible opportunities to
extend the current work to become smarter and more comprehensive. Section 3.7
concludes this chapter and outlines our research outcomes.

3.1 Introduction

Engineers in major industries, such as aerospace and automotive, use simulation
and optimization workflows to create, simulate and optimize complex designs.
Such workflows are complex and long-running processes, which are typically
composed of various software tools and services, to simulate and optimize
physical properties such as strength, vibrations, geometrical decomposition or
material selection. These tools can be knowledge engineering tools such as
ParaPy, and engineering tools such as MathWorks, Cradle, and more. Engineers
use different hardware to execute these workflows, e.g., their desktop computers
or High-Performance Computing (HPC) clusters.

Current situation. Desktop computers have limited capacity in terms of
processors, memory, and storage. In addition, the parallel execution of the
experiments is tied to the number of available cores and computers. HPC
clusters, unlike desktop computers, are very efficient and powerful, but they are
constructed with dedicated and expensive hardware, and their capacity is not
always directly available. Moreover, time slot reservation and complex queuing
API are yet another hassle for those engineers with long-running or recurring
experiments.

The promise of the cloud. Engineers can nowadays benefit from cloud
computing to gain on-demand access to the required resources for their
workflows, often based on cheap commodity hardware. Cloud computing
is a model for enabling on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications,
and services) [140]. Cloud orchestration tools enable automated provisioning of
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the required cloud-related resources such as virtual machines, virtual networks,
and required infrastructure software and middleware platforms. Therefore, the
infrastructure and deployment processes have become completely composable
and programmable.

Challenges. There are still key problems and challenges when deploying and
executing engineering workflows in the cloud. Engineers need to automate the
deployment, as well as support smart scaling and execution of simulation and
optimization workflows in the cloud. For each deployment and execution of the
workflow, this process includes adaptive deployment to collocate, separate and
parallelize the different tasks and their specific tools on the right amount and the
right type of nodes. Both can also vary depending on the specific parameters for a
certain execution. Automating this process includes automatic determination of
the required resource types (virtual machines, storage volumes, etc), automatic
estimation of the amount of cloud resources (number of virtual machines,
amount of memory and cores, etc), as well as the automatic bootstrapping and
destruction of the required infrastructure.

InfraComposer: towards smart deployment in the cloud. To address these
challenges, we present a reflective and adaptive middleware that enables
and manages (i) smart, adaptive workflow deployment, (ii) scaling and (iii)
execution in the cloud. We leverage both the domain-specific knowledge about
the concrete tools that are used, and deep inspection of these tools when
deployed and executing on the cloud platform.
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Figure 3.1: Middleware for cloudifying simulation workflows

The adaptive middleware is driven by both inputs from the engineers about
the properties of the tools they use, as well as the execution history of these
tools. The input from the engineers is specified as annotations on the workflows
and is based on human knowledge and assumption about the tools with regards
to CPU usage, memory usage, and network usage. The execution history over
time will be used to optimize the original deployment and scaling plan, and
thus to further adapt to actual real execution knowledge (see Fig. 3.1).

As such, our middleware defines two key contributions to existing orchestration
and deployment middleware:



46 INFRACOMPOSER: POLICY-DRIVEN ADAPTIVE AND REFLECTIVE MIDDLEWARE FOR THE
CLOUDIFICATION OF SIMULATION AND OPTIMIZATION WORKFLOWS

1. Annotation-driven resource reservation and deployment planning. Based
on the annotations in the workflow, an initial deployment plan will be
generated. A deployment plan is a topology and orchestration specification
for a cloud application which can be executed by a cloud orchestrator.

2. History-driven adaptive scaling and reconfiguration. The middleware
adapts the configurations of the deployment plans based on the execution
history of the workflows using previous results. This is driven by policies
that can reason about, and perform statistical analysis on the execution
history.

To achieve this, the reflective meta-models in the middleware enable
reification of:

1. key architectural concepts such as workflows, tasks, specific tools and
their deployment,

2. key execution concepts such as specific tool executions with specific
parameters, and

3. key resource utilization concepts such as nodes, cores, CPU time, memory,
storage, and network metrics.

Moreover, we validate and evaluate the concepts with real-world, industrial
use cases and scenarios reflecting actual production settings (see Section 3.2).
The main focus of this work is to present a holistic cloudification system for
engineering workflows with special attention to the reification of various concepts.
We validate the applicability of the system and relevance by implementing and
analysing these engineering use cases in general, and in particular aeronautics.

First, we extend the middleware concepts with policy-based adaptation.
Second, we describe the fine-grained architecture of the adaptive and reflective
middleware. Third, we provide extensive validation and evaluation in multiple
real-life application cases and adaptive scenarios.

3.2 Motivation and Use Cases

In this section, we present two examples of the industrial workflows from the
aeronautics domain. The goal is to discuss the adaptive scenarios.

Electrical Wiring Interconnection System (EWIS) In the design process of
aircrafts, EWIS is an important step of multidisciplinary design optimizations
(MDO). Aerospace engineers design and execute the complex simulation and
optimization experiments to find optimal solutions for cockpit wire harness
routings.
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Motivating Scenario. When considering the tasks in an EWIS workflow, it is
unclear whether the main optimization tool used by a task is memory intensive.
The most optimal deployment is achieved in a step-wise and adaptive process:
first driven by the engineer’s annotations, and then by the execution history of
the tool.

(1) The aerospace engineer specifies that the wire harness tool is not CPU
intensive but memory-intensive, because it loads a very large amount of data,
e.g. physical features of an aircraft, in memory. At least, this is the engineer’s
assumption, defined as annotations. (2) The middleware allocates a large
amount of memory with few cores for each virtual node in the cloud and
enables the engineer to execute the experiment as specified in the workflow. (3)
However, execution history shows that the tool is mostly CPU intensive because
the executing nodes reach the system load saturation limits, and the memory
resource has been overallocated. (4) The deployment plan should be updated
to employ a higher number of cores and less amount of memory for the virtual
nodes.

Design of the hinge system of an aircraft rudder Another multidisciplinary
design optimization (MDO) example can be found in the design process of
aircrafts. Optimization of a hinge design is a crucial part of an aircraft rudder
design as a whole, and it is automated as a workflow. The workflow consists of
a set of engineering tools, which are responsible for meshing and stress analysis
of hinge components, as well as performing a quasi-exhaustive search for all
different possibilities in order to minimise engineering objectives (e.g., total
weight) [97, 114]. In Section 3.5.2, we present a workflow as a validation.

Motivating scenario. These engineering tools are interdependent, and their
execution flow within the workflow is based on complex designs developed by
MDO experts. Therefore, the supported level of parallelization, as well as the
number of nodes and the required tool instances are unclear upfront to an
aerospace engineer.

(1) First, the engineer of the workflow, via annotations, specifies that only a
very large node is required. Moreover, the engineer also specifies an expected
execution completion time. (2) The middleware instantiates the node and
executes the experiment as specified in the workflow. (3) However, the execution
history shows that the execution takes much longer than the initial anticipation
due to a large number of sub-experiments. This results in many parallel runs
and scheduled jobs. (4) The deployment plan should be updated to adjust the
number of nodes (rescaling) with regard to the expected execution time.
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Section 3.5 presents more scenarios. Based on each of these workflows, a similar
pattern emerges:

• The deployment middleware needs initial domain knowledge about the
tools to achieve initial deployment plans.

• Taking the input parameters of the tools into account, deployment plans
should be optimised to achieve optimal executions.

• These workflows are typically composed of various discipline analysis tools
for execution. Each tool can be installed on different operating systems
and on specific host types (memory-focused host, CPU-focused host, or
high-performing storage hosts with SSDs).

• These workflows are often computationally intensive, and their execution
sometimes takes hours, days or weeks to be completed. Engineers use
parallel runs to speed up the execution.

• These workflows go through continuous improvement by reconfiguration
of the design parameters. Engineers re-execute the improved versions
recurringly to optimize their objectives. Therefore, the varying input
parameters of the workflows might influence the system in a way that
the deployment plans require adaptation accordingly. Because tools, for
example, might become more dependent on CPU than disk for different
parameters.

These common patterns introduce several key problems and challenges (refer to
Section 3.1) leading to the manual, duplicate, complex, and time-consuming
work for the engineers.

3.3 Related Work

Execution environment reproducibility Reproducibility and repeatability of
workflow execution environment are crucial aspects in scientific and engineering
workflow deployment. In that regard, Santana-Perez et al. [174] describe the
execution environment of workflows using semantic vocabularies to produce
annotated workflows (i.e., logical preservation of execution environment).
TOSCA [195] is an OASIS standard to describe the topology of cloud-based
applications towards portable, reproducible application deployments. Qasha
et al. [167] combine two execution-environment reproducibility techniques (i.e.,
the logical and physical preservation) of scientific workflows using TOSCA in a
container-based approach. In addition to the plain reproducibility concerns, our
middleware architecture employs reflection concepts to reconfigure deployment
plans, resulting in efficient execution environments.
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Reflective middleware The concept of reflection was first introduced by
Smith [183] in programming languages. Other works [23, 171] adopted the
concept in the middleware platforms, focusing on reconfigurability and openness
of such systems. Blair et al. [23] present two types of reflection: structural
reflection and behavioural reflection. Structural reflection is concerned with
the structure and the content of the component, which is represented by
two distinct meta-models, namely the encapsulation and composition meta-
models. Behavioural reflection is concerned with activity in the system, which is
represented by the environmental meta-model. Existing literature [22] extends
the architecture by presenting the resource meta-model to address the reification
of resource management. Weyns et al. [202] present a comprehensive reference
model for distributed self-adaptive systems with a special attention to the
reflection perspective. As applications of the reflection concepts in web services,
[72, 14] present adaptive and reflective middleware systems which are able to
expose their functionalities to application developers. Our meta-models are
inspired by these studies.

Auto-scaling of cloud resources Deployment plans are reconfigured by
rescaling of resources based on execution history, either horizontally or vertically.
A recent survey by Chen et al. [49] classifies the decision making tactics of the self-
adaptive cloud autoscaling systems into three major approaches: (i) rule-based
control, (ii) control theoretic approaches and (iii) search-based optimisation.
Alternatively, Lorido et al. [127] categorise auto-scaling techniques generally
into reactive (i.e., based on rules and current data) and proactive (i.e., based on
prediction) approaches, as well as a more fine-grained classification, resulting
in: (1) threshold based rules, (2) reinforcement learning, (3) queuing theory,
(4) control theory, and (5) time series analysis. Recently, Dhuraibi et al. [6]
conducted a comprehensive survey on elasticity in cloud computing with a special
attention to containers. InfraComposer employed a policy-based, history-driven
approach akin to the threshold-based approach. Thresholds are statically
defined, similar to the other existing literature [135, 62, 87, 86]. Most related
work [62, 87] use single or multiple metrics, but Hasan et al. [91] employed
several metrics from several domains such as compute, storage and network.
InfraComposer also forms its policies based on multiple domains varying from
workflow primitives to various cloud primitives.

Scientific workflows in the cloud Among open challenges of migration and
execution of scientific workflows on the cloud [208], computation and data
management are crucial. Processing large scientific data has impact on execution
mechanism of the workflow engines. Kacsuk et al. [108] present efficient data
pipelines by using a service choreography concept instead of the enactor-based
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workflow concept. Furthermore, data locality has influence on performance and
overall execution time [188, 41]. Regarding adaptive execution of the workflow
in the cloud, Oliveira et al. [155] introduce an adaptive approach to dynamically
tuning the workflow activity size to achieve better performance, and Wang et
al. [196] present an adaptive workflow management through dynamic iterative
optimisation framework. Although engineering workflows are inherently different
in comparison to scientific workflows, some of the challenges regarding data
management and adaptive execution share common requirements and concerns.

3.4 The InfraComposer Middleware

This section presents the architecture of InfraComposer, focussing on the
different features and subsystems of the policy-driven reflective and adaptive
middleware for the cloudification of engineering workflows.

First, the middleware supports annotation-driven, cloud-based deployment of
engineering workflows and their different subtasks. During execution, it collects
runtime information about task executions and the underpinning infrastructure
by reflective monitoring of resources, as well as deep inspection of software
tools. Adaptation policies, which are based on the execution history, enable the
middleware to reconfigure the deployment plans to be adaptive for recurrent
execution of the workflows .

The InfraComposer middleware architecture consists of four main components
(see Fig. 3.2): (i) a workflow manager component to expose a workflow
deployment API and to identify the annotated tasks and their annotations, (ii)
a configurator component to generate configurations based on given annotations
with respect to execution history data, (iii) a deployment plan composer
component to produce deployment plans based on elementary deployment
modules for the cloud orchestrator and to initiate the deployment, and (iv) a
monitoring component to store live monitoring data of workflow execution.

The rest of this section is structured as follows. First, we describe the annotation-
based deployment. We then elaborate on the reflective capabilities and the
meta-models. Third, we describe the policy-driven adaptation architecture.

3.4.1 Annotation-based Deployment

A simulation and optimization workflow is a group of tasks that, once completed,
will accomplish some objectives. As explained in Section 3.1, these tasks employ
different analysis tools, which are responsible for the execution. Workflows and
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Figure 3.2: Overview of the middleware with the annotation processing and
configuration components.

tasks can be annotated to provide more information about the required resources.
InfraComposer is capable of identifying these annotations in the workflow
manager component to provide necessary information for the configurator
component. There are two categories of annotations: direct-deployment and
resource-consumption annotations.

Direct-deployment annotations. These annotations provide the middleware
with direct information concerning deployment of workflows on the cloud. The
crucial aspects described by annotations are the employed analysis tools, their
deployment locations and number of instances. Tools can either be collocated or
separately deployed on the nodes. For example, annotations could describe that
some tools should be deployed on one node, others on individual nodes, and there
should be five instances of each node. Furthermore, network-related annotations
can propose a networking scheme for tools and nodes where necessary. For
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example, network-level segregation of nodes can be achieved for a network
intensive workflow.

Another direct-deployment annotation is the identifier of the existing resources
(e.g., instance images, volumes, networking components, etc.). For instance,
some of the engineering tools need human involvement during the installation
process, or install slowly due to the size of the packages. Therefore, these
tools can be installed and prepared as virtual machine images to speed up the
deployment process. The unique identifiers of the images help the configurator
component provide configurations to the deployment plan composer component.

Resource-consumption annotations. These annotations provide general,
approximate information about the infrastructural resource requirements of
the tools with regard to disk, memory, processor and network. The four main
categories of resource-consumption annotations are presented in Table 3.1.

Category Annotation
Disk Disk intensive percentage

Required disk space GB
Data locality location

Memory Memory intensive percentage
Required RAM GiB

Processor CPU intensive percentage
GPU intensive percentage
Required cores number of cores

Network Network intensive percentage
Required bandwidth Mbps

Table 3.1: Four main categories of resource-consumption annotations.

The computationally intensive workflows should employ suitable virtual
machines in order to execute efficiently and to minimise the interference
with other co-existing cloud users. Some virtual machines share the physical
processors with other tenants, and some have CPU-pinning, meaning that the
virtual cores are mapped to the physical cores in a shared-nothing approach.
Moreover, some public cloud providers offer domain-specific types of virtual
machines such as accelerated instances with GPU.

Furthermore, parallel execution of workflows may have considerable network
overhead due to the continuous transfer of large chunks of data. That
can easily saturate the bandwidth, slow down the execution, and interfere
with other co-existing users. Network annotations enable the middleware to
compose appropriate network architectures based on the available networking
infrastructure.
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Regarding other potential annotations which are not evaluated in this thesis,
workflows can specify whether the experiment is disk intensive, as well as the
required space. Cloud providers, either private or public, offer various types of
storage systems with varying capabilities, speed, etc. In addition, some clients
are concerned about data locality due to the enterprise policies or governmental
law (e.g., GDPR[65]). Such annotations can potentially guide InfraComposer
to select appropriate storage options with respect to the given constraints.

3.4.2 Reflective Capabilities and Meta-models

There are four styles of reflection in InfraComposer represented by four meta-
models, namely structural, deployment, execution and resource reflection.

Structural reflection. Structural reflection [81] results in a meta-model of
the different static concepts in the workflows defined by the engineers, which
represents the structure of workflows and tools within the middleware and
the execution history. Fig. 3.3 illustrates the meta-model. This meta-model
describes engineering workflows and composition of activities and tools, as well
as annotations.

Figure 3.3: The structural meta-model.

Deployment reflection. Deployment reflection results in a meta-model
representing and reifying the concepts in the deployment model. Fig. 3.4
illustrates the deployment plan and the mappings between workflows, activities,
tools (not illustrated), and cloud-based components such as compute nodes,
storage and networking elements.

Execution reflection. Execution reflection results in a meta-model of the
execution of activities and specific tools on specific nodes. This model reifies
concepts such as execution per workflow, execution per activity, and execution
per tool with respect to the engineer’s given design parameters (see Fig. 3.5).

Resource reflection. Resource reflection results in a meta-model of the
underpinning cloud infrastructure resources and domain resources (see Fig. 3.6).
Cloud infrastructure resources include concepts such as processing (cores),
compute nodes, memory, network and storage, which are reified for each
execution by consumption pattern. Such reflection allows the monitoring
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Figure 3.4: The deployment meta-model.

Figure 3.5: The execution meta-model.

Figure 3.6: The resource meta-model.

and adaptation phase to benefit from coarse-grained or deep introspection of
resources, leading to more efficient resource allocation in the future execution
of the workflows.
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3.4.3 Policy-driven Adaptive Architecture

InfraComposer monitors the execution of the workflows and builds a database
based on the execution history, with which it fine-tunes the deployment plans
and the configurations to make the future executions more efficient. Adding
intelligence to the smart adaptation capabilities of the middleware requires the
acquisition of new knowledge about the execution of the different tasks and
tools. For example, an annotation suggested that a tool was disk intensive, but
the execution history indicates that it is CPU intensive and only uses two cores
for input files smaller than 100 MB.

A recent survey [49] classifies the architectural patterns of self-adaptive
autoscaling systems into three groups: feedback loop, observe-decide-act
and MAPE(-K). InfraComposer is a policy-driven (self-)adaptive middleware
following the MAPE-K [110] architecture of self-adaptive systems [129] (see
Fig. 3.7).

Figure 3.7: Adaptive middleware using MAPE-K control loop.

Among different architectural patterns and decision making approaches, we
employed MAPE-K on account of better separation of concerns. Furthermore, we
opted for a rule-based control loop because of negligible overhead and manageable
policy reconfigurations at runtime.

As illustrated in Fig. 3.2, the monitoring phase collects information from the
cloud and workflow-specific resources. The data processor component parses,
filters, and transforms the monitoring data and persists it in a time series
database (TSDB). The analysis phase uses the persisted monitoring data by
performing statistical aggregate queries (e.g., max, min, average, percentile,
etc.), and it employs a policy engine to enforce adaptation policies to assess
the previous executions and to determine potential future improvements. The
planning phase reconfigures the deployment plans, using the history-driven
scaling propositions produced in the previous phase. The execution phase
redeploys the cloud resources and the software tools for another execution. The
knowledge about the workflows, and the cloud infrastructure (i.e., public/private
providers, available types of resources, the existing resources, etc.) is a cross-
cutting aspect serving information to each phase.



56 INFRACOMPOSER: POLICY-DRIVEN ADAPTIVE AND REFLECTIVE MIDDLEWARE FOR THE
CLOUDIFICATION OF SIMULATION AND OPTIMIZATION WORKFLOWS

In the architecture of InfraComposer, the analysis and the planning phase are
crucial. We employed a reactive [127] policy-based approach to adjust the
deployment plans and resource allocation based on certain thresholds provided
in policies. For example, a processing metric driven by statistics based on the
execution history exceeds a particular threshold defined in the rules. This shows
that the activity is a computationally intensive task. Then the configurator can
reconfigure the deployment plan for that node to employ CPU-focused virtual
machines.

Adaptation policies consist of rescaling rules. Each rule is composed of zero
or more conditions, as well as a number of actions as a consequence. As
depicted in Fig. 3.2, the metrics aggregator component executes complex
statistical queries on time series data gathered during workflow executions,
and it provides the aggregate data to the policy engine component through
its interface. The scope of these reflective data includes cluster-wide metrics
regarding the nodes (Cluster), the network (Net) and the storage systems
(Storage), together with virtual-node related metrics concerning an average
executing node (VM) and the coordinator node (Master). For instance, a
condition can be Net.bandwidth_utilization<1Gbps. When a condition is
satisfied, the policy engine performs rescaling actions (e.g. resize, add), which
provides re-configuration hints to the configurator component. For instance,
the resize action can be about nodes (e.g. number of cores, or the amount of
memory), or it can be cluster-wide (e.g. number of nodes).

3.4.4 Monitoring Data Management

We first present more details about the data management components, and
then we describe the scalability concerns and the possible existing solutions.

Monitoring data management components The monitoring data manage-
ment of InfraComposer consists of (i) a set of telemetry data collectors
(probes or agents) to inspect processes and system-wide metrics, (ii) data
processing pipelines to parse incoming data streams, filter out irrelevant (or
erroneous) entries, and transform them to the required format, (iii) a time-series
database (TSDB) to store the execution history and (iv) a metric aggregator
component including a data visualization layer to obtain aggregate inquiries,
and eventually make them available for the policy engine.

For example, when a workflow engine dispatches jobs across a cluster of nodes,
log entries regarding job events (e.g., started, completed, failed, etc.) are
streamed through the monitoring components and stored in the TSDB. The
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middleware is now capable of observing job count, job executions, throughput,
and so forth. An example query can be the average percentage of maximum
IO-wait during periodic time windows of 30 seconds for a specific python process,
running on all worker nodes, between the start and the end of the previous
round of the workflow execution.

Scalability of the stack The data processor component is perceived to
be scalable depending on the monitoring stack. Telemetry data collectors
(monitoring probes) should perform their tasks independently on worker nodes.
The data processing pipeline can scale out horizontally since its functionalities
are stateless and limited to parsing, filtering and transforming the input and
eventually forwarding the stream to the time series database. Lastly, the chosen
TSDB (e.g., InfluxDB, Elasticsearch, etc.) should be horizontally scalable.
Recently, Jensen et al. [105] carried out a comprehensive survey about different
angles of such databases including their architectural patterns.

Typically the data processing pipeline (e.g., Logstash) is the weakest link and it
is likely to be CPU and network intensive [118]. More specifically, the processing
functionalities include numerous CPU intensive executions of regular expressions
through filtering plugins (e.g., Grok). In addition, it is network intensive, in
the sense that if the input rate exceeds the maximum limit of the processing
pipeline instance capacity, it will then throttle itself.

The first remedy to alleviate the workload is to perform preprocessing at the data
collectors side. For example, data collectors should execute regular expressions,
detect and filter unnecessary logs; in other words, they should lift the workload
off the data processing pipeline before shipping the logs. Depending on the
volume of workload, preprocessing is not always sufficient; in fact, the pipeline
may again throttle itself against large-scale settings. The second additional
solution is to employ messaging queues [118]. In this scenario, the processing
pipeline instances need to get scaled out horizontally and follow a pull model
against the queue (e.g., a Kafka topic).

3.5 Prototype Implementation and Use Case Vali-
dation

In this section we assess and validate our adaptive and reflective middleware
for the cloudification of simulation workflows based on the use cases defined
in Section 2. More specifically, we demonstrate a set of particular adaptive
deployment scenarios and validate how both the reflective capabilities as well
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as the adaptation capabilities of the middleware can cope with each adaptive
deployment scenario. As a proof of concept, we implemented the concepts and
architecture of InfraComposer in our prototype middleware and developed our
two use cases (i.e., (i) the EWIS design and (ii) the design of the hinge system of
an aircraft rudder (see Section 3.2)) as two simulation workflows that leverage
the production workflow engine and actual simulation tools of the companies.

Simulation and optimization workflows, to achieve optimal objectives, go through
an iterative execution of experiments. Each run of the experiments comes with
different input design variables which are provided by the workflow engine at
runtime. Input design variables are most of the time slightly different compared
to the previous rounds. The behavior of a run is most likely predictable and
more and less the same as the previous round. We can not be certain that these
workflows are insensitive to the input data, however based on our observations,
the behavior change is not very extreme. Therefore, in this work we assumed
that every iteration of a workflow exhibits roughly the same behavior.

Moreover, we used OpenStack as a state-of-the-art cloud platform. Apart from
the industrial domain tools in the use cases, the middleware is written in Java
using the Spring framework, and the other technologies involved in each MAPE-
K phase were: (1) Elastic Stack [118] as monitoring stack in the monitoring
phase, including a set of telemetry data collectors (Filebeat and Metricbeat), a
data processing pipeline (Logstash), a time series database (Elasticsearch) and
a data visualisation layer (Kibana), (2) Drools [34] as rule engine in the analysis
phase, (3) TOSCA [195] as orchestration and topology specification in the
planning phase, and (4) Cloudify [75] as cloud orchestration and configuration
management system in the execution phase.

In our validations, InfraComposer performs reconfigurations and adaptations
through rescaling of cloud resources. We employed a policy-based approach for
the analysis and the planning phase. We consider two styles of rescaling:

• Vertical rescaling supports to add more (or remove) resources to a single
node in a system [63]. The middleware reconfigures resources to become
larger or smaller resources. For example, a virtual machine with 2 CPU
cores and 4 GB of RAM is reconfigured to 8 CPU cores and 8 GB of
RAM.

• Horizontal rescaling supports to add more (or remove) nodes to a
distributed system [63]. The middleware reconfigures the deployment
plans to duplicate the nodes. For example, one experiment executes over
16 virtual machines instead of 4 virtual machines.

In the following sections, we revisit the use cases and validate the adaptation
scenarios and monitoring results leveraging our adaptive and reflective
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middleware.

3.5.1 Electrical Wiring Interconnection System Design

The simplified EWIS workflow (see Fig. 3.8) illustrates the simulation and
optimization process of wire harness routing. Such workflow typically runs on a
workflow engine (in our case Optimus [185]). To achieve an optimal wire routing,
such optimization processes go through iterative execution of experiments in
parallel. Each run of the experiments comes with different input design variables
which are provided by the workflow engine at runtime. The workflow engine
is responsible for the creation, coordination and offloading of the jobs to the
worker nodes.

Following 3 different iterations (steps) in the MAPE-K loop, we performed
several experiments presenting a number of adaptation scenarios. We assume
that an engineer has made a set of inappropriate assumptions about the workflow
and its requirements in each scenario. Each step is an iteration of the MAPE-K
loop.

Figure 3.8: Overview of the workflow of wire harness routing simulation and
optimization in the cloud. The workflow engine (master node) and the worker
nodes are deployed in virtual machines.
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vCPU RAM (GB) Nodes Intensiveness Execution Jobs per VM

Step 1 2 16 5 Memory
Network 62.37 min 9

Step 2 4 8 10 CPU
Network 33.10 min ∼5

Step 3 4 4 15 CPU
Network 22.02 min 3

Table 3.2: Configuration details of each execution round of the EWIS workflow.

Scenario 1: the workflow is memory intensive The engineer annotates the
wire harness tool as memory intensive, but the reflective monitoring shows that
the tool does not load a very large chunk of data to the memory before and
during the workflow execution. Consequently the deployment plan is altered to
scale down and to employ virtual machines with a lower amount of memory.

In step 1, the workflow engineer specifies both direct deployment and resource
consumption annotations. The former includes the use of the wire harness
optimization tool, a single installation per node, a total of five worker nodes,
and a shared storage for geometrical data. The latter describes the workflow as
memory and network intensive. The workflow is then sent to InfraComposer
to deploy the cloud infrastructure. As depicted in Fig.3.8, the execution then
starts and the workflow engine (the master node) sends optimization jobs to the
worker nodes. Given the above configuration, the total execution took 62.37min
(see Table 3.2). In this table, the Step1 settings are provided by the engineer,
but the other steps are reconfigured by InfraComposer based on the adaptation
scenarios and policies. Each execution step is an iteration of the MAPE-K loop
which contains 45 experiments. Each node can take a job (optimal wire harness
routing calculation) at a time in this use case. The number of experiments is
specific domain knowledge, and InfraComposer observes the 45 experiments as
one large experiment.

Afterwards, the engineer aims to re-execute the workflow with more experiments.
InfraComposer monitored the execution of step 1, and it persisted the monitoring
data after deep inspection of different processes, jobs, and system-wide metrics.

The monitoring component aggregates memory-related metrics (e.g., free, swap
memory, etc.), and it transfers the results to the policy engine in order to enforce
the business rules (see Table 3.3). As shown in Fig. 3.9, a large portion of the
memory remained unused in step 1. Therefore, the virtual machine has been
resized to employ less memory in order to avoid over provisioning.
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S Adaptations Policies

1

– Assumption:
memory intensive
– Adaptation:
scale up/down the VM

input :VM
if VM.free_memory > 4GB
and VM.total_memory >= 4GB then

resize(VM, VM.total_memory/2)
if VM.swap_memory > 0 then

resize(VM, VM.total_memory*2)

2

– Assumption:
CPU intensive
– Adaptation:
scale up/down the VM

input :VM
if VM.load_average < VM.cores
and VM.CPU_utilization < 40%
and VM.cores >= 4 then

resize(VM, VM.cores/2)
if VM.load_average > VM.cores
or VM.CPU_utilization > 60% then

resize(VM, VM.cores*2)

3

– Assumption:
few number of nodes
– Adaptation:
scale in/out the VMs

input :Cluster, VM, Workflow, Net, Master, license, quota
if (Workflow.execution > 30min
or VM.accepted jobs > 1)
and Net.bandwidth_utilization < 1Gbps
and Net.packet_loss < 5%
and is_sufficient (license, quota)
and not master_node_saturated(Master) then

quantity ← license.tools < 5 ? license.tools : 5
resize(Cluster, Cluster.VMs.count + quantity)

if Net.bandwidth_utilization >= 1Gbps
or Net.packet_loss >= 5%
or master_node_saturated(Master) then

resize(Cluster, Cluster.VMs.count - 5)

Table 3.3: Policy-based adaptation scenarios based on execution history. The
system performance analysis is performed using the Utilization Saturation and
Errors (USE) [82] methodology. Aggregated values are maximum values, and
VMs.load_average maps to the system load during the last one-minute periods
in Linux.

Scenario 2: the workflow is not CPU intensive The workflow (i.e., the wire
harness optimization task in particular) is not annotated to be compute-bound,
but the reflective monitoring data shows that the nodes and the tools utilize
more than a particular threshold. More specifically, the virtual machine load
average depicts system saturation by having a load number higher than the
number of cores. Therefore, the deployment plan is updated to scale up and
employ more cores.

To re-execute the workflow after step 1, InfraComposer enforces some compute-
related rules using its policy engine (see scenario 2 in Table 3.3). Fig. 3.10
illustrates the CPU utilization as well as the system load during the last one-
minute periods (Linux load average 1min). The Linux system load indicates
system saturation and it should normally be less than the number of cores. In
step 1, the virtual machine employed 2 cores and accordingly the system is
saturated. Therefore the workflow is reconfigured to employ 4 cores instead,
both for step 2 and step 3. As a result, the system load remained below 4 (the
number of cores).
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Figure 3.10: CPU utilization and load average of the workers and the master
node. Master node has 4 cores. Each core is a virtual core.

Scenario 3: the workflow needs few number of nodes The engineer
anticipates that the horizontal scale of the wire harness virtual machines should
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be limited. He has to comply with his quota of total number of cores and
memory in the distributed setup, and initially wants it to be deployed cheaply
on a few number of instances. However, the reflective monitoring shows that
there are a considerable number of parallel runs (i.e., scheduled jobs) due to
the large size of input parameters and datasets (about the physical features of
the aircraft). This results in a long-running overall execution. Consequently,
the deployment plan is reconfigured to scale out the nodes in number and scale
them down in memory size. As such the workflow can employ more instances of
the tools, and can thus satisfy the expected execution time requirement while
respecting quota and budget.

Policies in Table 3.3 for scenario 3 present horizontal re-scaling constraints as
rules. In addition to execution time and number of accepted jobs per VM (9
jobs per VM in step 1), networking metrics, licensing and quota limitations
are important too. Cluster-wide bandwidth utilization has an actual upper
limit, and reaching that limit causes network saturation in terms of packet loss,
networking errors and segments retransmissions. Furthermore, there should be
available resources in the master node due to the execution of the workflow and
the job scheduling. Policies make sure that the master node is not saturated in
terms of average load, available memory, and disk IO rates.
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Figure 3.11: Cluster-wide bandwidth utilization of the network where the shared
volume is operating.
Fig. 3.11 illustrates the cluster-wide bandwidth utilization of the network where
the shared volume is operating. The maximum inbound rate (34.9 MB/s in step
1 (not shown), 54.5 MB/s in step 2 and 84 MB/s in step 3) is lower than the
overall bandwidth of the network, and therefore packet loss was negligible. In
addition, disk IO utilization of the nodes were 52.4% in step 1, 74.82% in step
2 and 70.05% in step 3. The network latency of the shared volume has impact
on these values. Therefore the policy engine scaled out and reconfigured the
number of nodes to 10 in step 2 and 15 in step 3, and accordingly the execution
time was 29.27min faster in step 2 and 40.25min faster in step 3 in comparison
with step 1.
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3.5.2 Design of the Hinge System of an Aircraft Rudder

As depicted in Fig. 3.12, this workflow employs seven engineering tools (denoted
as Tool1 to Tool7). These tools are responsible for meshing and stress analysis
of different hinge components. Similar to the previous use case to obtain
an optimized result (see Section 3.5.1), the workflow goes through iterative
executions with different input design variables.

Figure 3.12: Overview of the execution architecture of aircrafts hinge system
design and optimisation in the cloud.

vCPU RAM (GB) Nodes Intensiveness Execution Jobs per VM

Step 1 8 16 1 Memory
CPU 109.20 min 315

Step 2 4 8 5 Disk 22.23 min 63
Step 3 2 4 10 Disk 12.12 min ∼32
Step 4 2 4 14 Disk 9.75 min ∼23

Table 3.4: Configuration details of each execution round of the hinge system
design and optimization workflow. The Step1 settings are provided by the
engineer, but the other steps are reconfigured by InfraComposer based on the
adaptation scenarios and policies. Each execution step contains 45 experiments.
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The overview of the different experiments and results results are listed in
Table 3.4. In step 1, the tools are annotated to be collocated on a single, large,
powerful node, and the entire workflow is presumed memory and CPU intensive.

Scenario 1: the workflow is memory intensive The engineer annotates the
entire workflow as memory intensive, but the reflective monitoring shows
overprovisioning of resources. As illustrated in Fig. 3.13, the policy engine of
InfraComposer scales down the deployment plan from 16 GB memory in step 1
to 4 GB memory in Step 3. As a result, the execution has a smaller yet more
cost-effective footprint. Policies are listed in scenario 1 of Table 3.3.21/08/2018 draw.io
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Figure 3.13: The Hinge System case: average free memory vs. memory swapping
in different steps.

Scenario 2: the workflow is CPU intensive The engineer annotates the
workflow to be compute-bound, but the monitoring system shows that the
compute resources are underutilized. In step 1, the deployment plan is set to
employ 8 virtual cores, which results in maximum utilization of 7.2% for 315
sequential jobs (see Fig. 3.14). For re-execution of the workflow, the policies of
the second scenario (see Table 3.3) trigger the InfraComposer configurator to
scale down from 8 cores in step 1 to 2 cores in step 3. However, the CPU still
remains unsaturated1.

1Since the workflow has Windows-based worker nodes, there was no load average metric
in place. The OS of the master node is Linux for both use cases.



66 INFRACOMPOSER: POLICY-DRIVEN ADAPTIVE AND REFLECTIVE MIDDLEWARE FOR THE
CLOUDIFICATION OF SIMULATION AND OPTIMIZATION WORKFLOWS

22/08/2018 draw.io

chrome-extension://pebppomjfocnoigkeepgbmcifnnlndla/index.html 1/1

00'00" 22'23"11'12"
(a) Step 1. 8 virtual cores

 (max: ~7.2%, 1 node, 
  315 jobs per node)

(c) Step 3. 2 virtual cores
(max: ~34%, 10 nodes, 

  ~32  jobs per node)

00'00" 06'06" 12'12" 00'00" 04'38" 09'75"

8%

6%

4%

0%
00'00" 54'50" 109'20"

Tools 2.2%

(d) Step 4. 2 virtual cores
(max: ~35%, 14 nodes, 

  23 jobs per node)

2%

15%

10%

5%

0%

40%

30%

20%

0%

10%

40%

30%

20%

0%

10%

Total 5.31% Tools 1.3% Total 12.03%

Tools 0.5% Total 9.95% Tools 0.6% Total 8.7%

(b) Step 2. 4 virtual cores
 (max: ~14%, 5 nodes, 

  63 jobs per node)

Figure 3.14: Maximum CPU utilization of the VMs and the tools.

Scenario 3: the workflow needs few number of nodes The engineer
anticipates that a larger virtual machine is more efficient than a higher quantity
of nodes. That results in an undesirable execution time of 109.20min. Beside
other metrics, deep inspection of the workflow execution shows that this node
received 315 jobs. Therefore, InfraComposer reconfigures the deployment plan
to scale out horizontally and yet stay compliant with quota limitations when
the engineer intends to re-execute the workflow.

As listed in Table 3.3, horizontal resource rescaling is constrained by cluster-
wide metrics (e.g., overall bandwidth utilization) and master-node metrics (e.g.,
load average, free memory and disk I/O utilization). The network bandwidth
utilization of the cluster has an acceptable rate of 7.8 KB/s in step 1, 39.1 KB/s
in step 2, 293 KB/s in step 3, and 100 KB/s in step 4. As illustrated in Fig. 3.15,
(a) and (b) represent the system load average during the last one-minute periods
of the master node (i.e., with a maximum value of 1.4 in step 1 and 1.9 in step
4). Therefore, the master node remained unsaturated while managing 14 worker
nodes. Furthermore, the master node never experienced memory paging, and
it had free memory in all of the steps (i.e., with a maximum value of 6.4 GB
in step 1, 6.1 GB in step 2, 5.8 GB in step 3 and 5.9 GB in step 4). Lastly,
the Linux manual [76] defines disk I/O utilization as “percentage of CPU time
during which I/O requests were issued to the device (bandwidth utilization for
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the device). Device saturation occurs when this value is close to 100%". As
depicted in Fig. 3.15, the percentage is around 12% in step 1 and 26% in step 4
at peak load moments.

As a result, the policy engine triggers the configurator component to resize the
number of nodes to 5 in step 2, 10 in step 3 and 14 in step 4, and accordingly
the execution time was reduced with 86.97min in step 2, 97.08min in step 3, and
99.45min in step 4. The distributed setup thus indeed scales well horizontally
and the workflow executes much faster in comparison with step 1.22/08/2018 draw.io
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Figure 3.15: System load average and percentage of Disk I/O utilization of the
master node which has 4 vCPUs and 8 GB RAM.

3.6 Limitations and Future Opportunities

In this section, we outline our design decisions and future research opportunities
regarding (i) the granularity of componentization, and (ii) the policy-based
decision making mechanism in the context of engineering workflow cloudification.

Granularity of Componentization InfraComposer is presented with virtual
machines as the granularity of componentization; however, the concepts
presented in the architecture are not necessarily tied to any specific component
model (e.g., virtual machines or containers). Our future work includes applying
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the concepts presented in this work to a containerised environment, which
requires few considerations: (i) the reflective architecture and in particular
the meta models (e.g., the resource meta model) should be adjusted to the
new settings. (ii) The current architecture relies on a cloud orchestrator and a
unified, modular, reusable deployment topology and orchestration specification
such as TOSCA. Since mapping TOSCA to containers is not fully realised [60],
there is a need for such an abstract specification enabling the integration with
the state of practice container orchestration systems (e.g., Kubernetes, Mesos,
Docker Swarm, etc.). (iii) Engineering workflows employ diverse set of domain
tools executable on various operating systems; therefore, containers should
be fully supported in those operating systems. (iv) Lastly a new autoscaling
mechanism should be proposed in this context.

Dynamic Adaptation Policies The current InfraComposer architecture is
based on a policy-based approach to define rules and in particular their
thresholds (see Section 3.4.3, 3.5). This approach heavily relies on the domain
knowledge of engineering workflows in order to prepare the policies, and on
top of that, thresholds are statically defined. To dynamize the decision making
machanism, Chen et al. [49] classifies the state of the art into (i) control theoretic
approaches and (ii) search-based optimisation. The control theoretic approaches
(e.g., Kalman control, Fuzzy control or PD) are well studied; however, they
fall short of handling multi-objectivity (e.g., execution time, cost, etc.) and
performing well where many rescaling decisions are supposed to be made.

On the contrary, search-based optimisation approaches such as reinforcement
learning are promising based on the recent surveys [49, 127]. In this context,
the complex nature of the engineering workflows cloudification and the vast
optimisation space makes these approaches candidate to approach the problem.
The optimisation space spans from single application configurations to co-
location of services on nodes, processing components (VM or container), storage,
networking, and so on. These tactics are appropriate because of well-studied
related work in the domain of auto-scaling with regard to multi-objectivity
through weighted sum, Pareto relation, and so forth, which is a requirement in
our context.

Cloudification of engineering workflows requires a hybrid-level of control
granularity (e.g., cloud resources and application level) entailing a large number
of cloud primitives to monitor and tune in the adaptation process. Selecting
relevant features to tune for the running workflow at hand is not an easy and
trivial task to do manually. Therefore, an automatic detection of distinguishing
abstract features in the execution history is an important improvement in this
process (e.g., Chen et al. [48]; vPerfGuard[205]).
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In summary, we envision the roadmap of a smarter deployment and execution
of engineering workflows on the cloud within the MAPE-K control loop, which
encompasses (i) exploring different granularity of componentization including
containers and VMs; (ii) employing a smart, dynamic decision making approach
such as search-based optimisation; (iii) detecting distinguishing features for the
problem (workflow) at hand and their correlations with the given objectives;
and lastly (iv) evaluating and validating the outcome in synthetic and most
importantly real world cases and scenarios such as what has been achieved in
this work regarding the policy-based approaches.

Threats to validity. We evaluated the middleware in an OpenStack cloud
platform shared with other tenants. We have taken all possible isolation
measures into account making sure that our performance numbers are not
influenced by co-located tenants on the bare-metal compute nodes. Furthermore,
the validated application cases are based on real-world aircraft designs, industry-
standard tools and workflows. Due to the high financial cost of these tools and
data, we had the opportunity of running our evaluations for a short window of
time.

3.7 Conclusions

We introduced InfraComposer, a policy-driven, adaptive and reflective
middleware, which enables simulation and optimization workflows to achieve
smart and optimized deployment on cloud infrastructures. Our step-wise
approach includes: (i) obtaining the engineers’ input about initial, direct
deployment of workflows through annotations in the first place, and (ii) the
acquisition of new knowledge based on the actual execution history employed
to produce improved deployments. Policies encapsulate knowledge of cloud
engineers and system administrators to optimize the deployments based on
execution histories. Such policies reason about reflective time-series data and
act upon it by reconfiguring and resizing the execution environment for next
iterations of the engineering workflow. As a validation and evaluation of the
middleware, we presented specific adaptive deployment scenarios in real-life
application cases in the domain of aeronautics. We validated how both the
reflective and the adaptation capabilities of the middleware can cope with each
scenario.





Chapter 4

DataBlinder: A distributed
data protection middleware
supporting search and
computation on encrypted
data

This chapter presents DataBlinder, a distributed data protection middleware
supporting search and computation on encrypted data. DataBlinder provides
crypto agility through configurable fine-grained data protection at the
application level. DataBlinder supports adaptive selection of data protection
tactics at runtime and offers a plugin architecture for such tactics based on a
key abstraction model for protection level, performance, and supported query
functionality. Under the hood, the middleware handles transparent distributed
execution of the tactics by coordinating the different abstract steps in the
tactics regarding secure indexing, distributed communication, and ensuring
secure combinations of tactics without unexpected leakages. Lastly, to move
computation closer to the data, we investigate the feasibility and usability of
deploying cryptographic operations as user-defined functions (UDF) within
widely used NoSQL database systems, namely Cassandra and MongoDB.

This chapter is based on an extended version of a publication at the 20th
ACM/IFIP/USENIX International Middleware Conference Industrial Track
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(Middleware Industry 2019) [17], as well as a publication in the Journal of
Information Systems [168]. The content of this chapter is structured as
follows. Section 4.1 introduces the domain of data protection, its latest
advances, challenges and our contributions. Section 4.2 briefly provides
a preliminary background on searchable encryption, property-preserving
encryption, homomorphic encryption, and our application cases. In Section 4.4,
we present two conceptual abstraction models for data protection tactics
for security experts and protected data access for software developers, and
afterwards, Section 4.5 describes the architecture and implementation of the
middleware. Section 4.6 continues with a use-case validation and performance
evaluation of the middleware. This section further investigates the feasibility and
applicability of running cryptographic UDF within Cassandra and MongoDB.
Lastly Section 4.3 and Section 4.7 conclude our research by providing the related
work in this area and our concluding remarks.

4.1 Introduction

Software service providers use public cloud computing infrastructure to expand
their computational capabilities and storage capacity. Outsourcing customer
data to the public cloud is not always feasible for all domains of industry,
especially the healthcare sector. The reason lies in the fact that a significant
amount of their customer data is sensitive, and public cloud providers are
considered to be honest-but-curious. As a result, service providers are reluctant
to offload their sensitive data to external infrastructure. They either store their
sensitive data on their premises or use data encryption to protect them against
curious eyes.

Data protection regulations trigger companies to further enrich their security
countermeasures to protect sensitive data, notably personally identifiable
information. For instance, regulations oblige healthcare companies and
organizations to notify the authorities regarding any data breach of unsecured
protected health information (e.g., GDPR [169] and the HITECH Act [154, 153]).
They are thus skeptical about employing cloud-based infrastructure and services,
in particular, for storage of their critical data.

Healthcare providers are forced to deploy data protection mechanisms that go
beyond encryption at rest or transmission. The state-of-practice data protection
at rest using standard encryption is insufficient as software services are required
to perform operations on encrypted data. They should be able to execute
queries like:



INTRODUCTION 73

• finding the patient with a particular gastric cancer who was admitted to
the hospital in 12/05/2012 (boolean search),

• calculating the average heart rate of a patient (aggregate), or
• the number of times that the nurses refilled Doxycycline for a patient

(aggregated search).

Latest advances. Researchers and practitioners have proposed many
searchable encryption (SE) tactics and data protection systems for enabling
search and computation on sensitive data in untrusted environments. Followed
by Song et. al [186], a prominent body of research has been dedicated
to symmetric SE (SSE). The research efforts have focused on defining
security notions (e.g., IND-CKA2 [56]), building updatable and scalable
schemes [43, 29, 30], optimal locality of encrypted indexes [45, 59, 43], and
more complex functionalities such as boolean search [44, 109]. More practical,
albeit less protective mechanisms, are based on property-preserving encryption
(PPE), e.g., deterministic encryption (DET) [13], order-preserving encryption
(OPE) [5, 25] and order-revealing encryption (ORE) [26] schemes. Furthermore,
homomorphic encryption (HE) schemes allow us to operate, i.e., addition and/or
multiplication, directly over encrypted data. HE schemes provide either addition
or multiplication e.g., Paillier [159] and ElGamal [64]. Somewhat HE (SHE)
and Fully HE (FHE) offer some combination of both at the cost of performance
e.g., BGV [31] and TFHE [51].

Each of these tactics attempts to find a trade-off between security, performance
and functionality. For example, encrypting the whole database (AES128)
without searchability in mind provides us with a high degree of security but falls
short of performance. Some tactics leak less information than others; among
them, there are some with sub-linear search complexity. Each of these schemes
offers different functionalities (e.g. equality, (con/dis)junction, etc.). Lastly,
these advanced cryptographic constructions typically have complex designs
leading to adoption difficulties by practitioners.

Challenges. There are several challenges for the development and application-
level integration of such data protection tactics:

(i) there is no one-size-fits-all cryptographic scheme which maximizes all
three aspects of the security, performance, and functionality trade-off;

(ii) integrating data protection tactics in the form of libraries to heterogeneous
and polyglot software, e.g., microservice architectures, is prone to
mistakes because such systems are developed using various ecosystems of
programming languages;

(iii) the underpinning concepts and implementation details of cryptographic
constructions used in data protection tactics are mostly complex for
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application developers; in other words, choosing a right scheme as well as
a secure and correct implementation are also prone to mistakes;

(iv) developing and incorporating new cryptographic schemes in an existing
software stack is not a trivial and straightforward task for cryptographers;
moreover,

(v) hypothetically, the computation of cryptographic functions (e.g., homo-
morphic addition) closer to the data within the database engine should
be faster. However, the integration process in the scope of mainstream
NoSQL databases is not straightforward and it is unclear whether this
approach is feasible and practical—without changing the source code of
the databases.

Contributions. We present DataBlinder, a distributed data-access middleware
that encapsulates the complexity of data protection tactics. This middleware
was developed in the context of an industrial applied research project [100] 1 in
close collaboration with software service providers. It enables software service
providers to seamlessly outsource sensitive data to the cloud-based services and
yet be able to operate on it. The contributions are:

Adaptive selection of data protection tactics. We present an abstraction model to
reify the data protection concepts, allowing application developers to request for
their desired protection level and types of queries. The middleware accordingly
selects appropriate tactics satisfying the requirements presented in the policies,
and it adaptively loads the right implementation at runtime.

Extensible and pluggable architecture. Data protection tactics are subject to
change to be more efficient, more secure and/or more expressive. Inspired by
the comprehensive categorisation of Fuller et al. [71], we present an abstraction
model for data protection tactics to reify their leakage profile, performance
metrics and operations. As a result, tactic developers are provided with a set of
interfaces based on the required operations using the Service Provider Interface
(SPI) pattern, through which they plug in new tactics.

Recent research efforts have attempted to design and build secure database
systems, such as CryptDB [166], Blind Seer [160], OSPIR-OXT [44, 43, 66],
Arx [21], SisoSPIR [102], EncKV [207], etc. These systems employed
different cryptographic constructions, such as SSE, various types of PPE,
hardware-assisted approaches based on Trusted Execution Environments (TEEs),
Oblivious RAM, and so on. The two key differentiating goals of our contributions
in comparison to the prior research are (1) presenting an architecture enabling
the software service providers to configure a notion of security with respect to

1https://www.imec-int.com/en/what-we-offer/research-portfolio/seclosed
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their required operation, and (2) facilitating the current and future tactic
extension process, unlike other systems that focused only on application
developers and the cloud providers; therefore, our design is extensible and
not tied to any specific tactic. More importantly, the adaptive and pluggable
architecture take us one step closer to crypto agility, i.e., the ability to plug and
play cryptographic schemes depending on their evolution in time.

To implement the architecture, some functionalities such as homomorphic
encryption are required to run as close as possible to the data. Therefore, we
implemented a dynamic deployment module for evaluating the feasibility, and
applicability cryptographic functions within the NoSQL database engines in the
form of User Defined Functions (UDF). For our investigations, we leveraged the
UDF features of Cassandra and MongoDB and incorporated the homomorphic
addition of the Paillier cryptosystem [159]. Our analysis concludes that the
usability of this approach depends on the database in terms of their programming
languages and systems support.

We validated the architecture by implementing several state-of-the-art data
tactics leveraging our SPI’s, and evaluated on FHIR-compliant [95] medical
data. Our performance evaluations show that DataBlinder has limited impact
on overall performance.

4.2 Background and application cases

This section briefly presents the cryptographic primitives and application cases.

4.2.1 Background

Over the past years, researchers and practitioners attempted to make practical
SE constructions at the cost of allowing limited and defined information leakage,
and yet retaining security in both the snapshot and persistent adversarial models.
The snapshot model means the adversary obtains a snapshot of the secure index
and the database, a well-motivated model for data breaches in the industry.
The persistent model assumes that the adversary can observe all operations of
the cloud server but without any interference.

Searchable encryption (SE). These schemes generally enable cloud providers
to search for user-requested keywords on encrypted data without knowing the
search word content and the plaintext data. These constructions are typically
built on top of secure indexes that reveal no information (or formally defined
leakage, also called leakage profile) about the content of search words and data
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itself. In brief, they typically start with a setup protocol. This protocol generates
the required keys, builds the initial index and prepares the cloud and local
data stores. Next, the query protocol performs the search query by generating
trapdoors (also called tokens) at the application side, which ideally reveal
nothing about the search term. Using the trapdoors, the cloud provider can
query the secure index by running an algorithm as a part of the search protocol
and provide the querier with the encrypted document identifiers. Dynamic
schemes include an update protocol for addition, deletion, and modification
of the encrypted documents. An example query can be searching for patients’
details such as their health problems.

Range queries on encrypted data. The main goal of such schemes is to
allow cloud providers to compare ciphertexts without decryption by applying a
comparison function. That enables the SE-based systems to build more complex
queries such as range queries. Although the practical SE constructions built
upon these primitives are recently subject to attacks [148, 84, 116, 83], they are
still an ongoing research subject. An example query can be searching for patients’
health problems between particular date ranges. Outside of the scope of this
dissertation, there exist less practical but more secure constructions based on
different cryptographic primitives such as fully homomorphic encryption (FHE)
and Oblivious-RAM [78].

Homomorphic encryption (HE). Homomorphic encryption schemes encrypt
data in a way that their underpinning mathematical properties enable the
applications, in our setting the cloud providers, to perform certain operations
on encrypted data such as addition or multiplication. Note that any function
can be built as an arithmetic circuit, using solely addition and multiplication
gates. The downside is that FHE or even SHE schemes that are capable to
provide both, report poor performance in terms of computation and storage.
Semi homomorphic schemes, however are considerably faster and have been
commonly used in schemes that require arithmetic or geometric aggregation.
In general, these schemes have been used in building aggregate functions in
encrypted database systems. An example query can be calculation of the average
heart rates or body mass index (BMI).

4.2.2 Application cases

Many businesses outsource various parts of their business activities to software-
as-a-service (SaaS) providers, which use cloud computing platforms to run
their software services. In most cases, customers’ data is stored on the
cloud platforms; however, their customers impose strict requirements on data
protection and privacy. Therefore, SaaS providers are obliged to protect
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sensitive data in a way that is secure against cloud providers and data breaches.
Cryptographic protection techniques should at the same time preserve the
required functionalities of these applications, such that SaaS providers can
execute various queries like search or aggregations.

Electronic health record system. In healthcare, storage, and management
of medical information is an important and critical aspect of the healthcare
processes. Not only hospitals but also private practitioners require such software
to manage patients’ data. Medical data is one of the most sensitive types of data
that requires special protection in software-defined systems. SaaS providers
aim to offer electronic health record (EHR) systems to healthcare organisations.
Therefore, putting strict cryptographic protections into practice is undoubtedly
important and necessary. However, SaaS providers should be able to enable
practitioners to perform various operations such as storage and retrieval of
medical data. For example, in a medical laboratory, experiment observations
(e.g. the amount of Glucose) are supposed to be stored and queried.

Invoice management system. In FinTech, many businesses outsource their
billing services to the SaaS-based service providers, also known as billing as
a service (BaaS). In such services, SaaS providers allow their customers to
securely manage their financial documents and yet enable them to perform
several different types of search operations. These cloud-based offerings make
the recurring billing process as seamless as possible and provide a wide range
of financial services, including the management of financial documents such
as invoices, bills, accounts, and payments. The BaaS customers include
organisations of all sizes from different application domains (e.g., banks,
hospitals, telecom operators, etc.) with strict data protection policies. For
example, one of the key operations is to search for invoices of a customer
with search constraints such as paid or unpaid. Next to such search queries,
SaaS providers typically run aggregate queries to provide the customers with
statistical information (e.g. the average Internet fees for a region and the
percentage of (un)paid invoices).

4.3 Related work

This section includes a state-of-the-art overview of searchable encryption (SE)
and aggregate-based data protection tactics including searchable symmetric
encryption (SSE), range queries and homomorphic encryption (HE). Further-
more, we present an overview of encrypted databases and middleware solutions
that attempted to protect sensitive data in a pragmatic way. We outline how
DataBlinder differs from state of the art.
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Data protection tactics. Followed by the seminal searchable scheme of Song
et. al [186], there has been a tremendous effort to offer practical constructions.

First, a large body of work have defined different security notions for SSE
systems [28]. IND1-CKA [77] guarantees that no information about the content
of documents can be learnt from the index. IND2-CKA further improved the
definition by strengthening the security notion accordingly. Curtmola et al. [56]
showed that protection of trapdoors are related to the search index, and as a
result, they presented IND-CKA1 for non-adaptive security and IND-CKA2
for adaptive security. Both definitions determine that no information should
be leaked from the index beyond search results and search patterns, and the
trapdoors should not leak anything about search terms. Adaptive security
notion means that an adversary can select its queries as a function of previous
trapdoors and search results [56, 28]. IND-CKA1 and IND-CKA2 are the most
widely used security definitions in this area. Bösch et al. [28] surveyed other
definitions. The formal security definition of such settings was a challenge,
which impacted our abstraction models.

Furthermore, research efforts have focused on building updatable and scalable
schemes [43, 29, 30], optimal locality of encrypted indexes [45, 59, 43], and
more complex functionalities such as boolean search [44, 109]. The slightly less
secure–but more practical–line of tactics are based on PPE such as DET [13],
OPE [5, 25] and ORE [26] schemes. Operations on encrypted data like addition
and multiplication can be performed by HE [1] schemes, which includes partially
HE (PHE) such as Paillier [159] and ElGamal [64], and fully HE (FHE) such as
TFHE [51].

Encrypted databases. Designing protected search systems has been an active
research area over the past years. CryptDB[166] is one of the seminal works,
using onion of encryption that encrypt data in a layered approach for queries
with different functionalities. The main goal is to keep the underlying legacy
database unchanged. Pappas et al. [160] present Blindseer which is, unlike
CryptDB, a custom database based on an approach using encrypted bloom
filter trees as a storage mechanism. Fuhry et al. present the HardIDX [70]
secure index system which leveraged Intel SGX to perform relatively efficient
queries. Towards building secure NoSQL database systems, ARX[164] aims at
presenting a protected system on top of MongoDB to provide the functionalities
necessary to support associative arrays. EncKV [207] proposed a secure key-
value store with a focus on secure and efficient partitioning of encrypted data
and distributing data evenly across a cluster.

Database user-defined functions. Our aim is to bring the server-side (or
cloud-side) operations of the protection tactics as close to the data as possible.
Therefore, it is intuitively ideal to run the operations within databases. Using
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user-defined functions (UDF) is one way to achieve this goal. CryptDB [166]
presented most of its functionalities in MySQL as UDFs. Stankovski et al. [189]
implemented Paillier in the Cassandra database and concluded that the execution
time rises exponentially for large datasets, and most importantly, it is not ideal
in situations where Cassandra clusters are composed of many nodes. Since this
space has not yet been extensively explored, our research extends the research
to document-oriented NoSQL databases, namely MongoDB.

Middleware solutions. Diallo et al. present CloudProtect [61], a middleware
to enable users transparently encrypt sensitive data within various cloud
applications. Their main goal is to support application functionalities while
protecting sensitive data. CloudProtect uses deterministic encryption for search
purposes, and on top of that, it has a policy-based protocol to expose sensitive
data in plaintext for a limited duration on the server if some operation or
function execution requires access to the data in plaintext. Alves et al. [128]
present a framework for searching encrypted databases. They use ORE and HE
for the range and aggregate queries.

There are several commercial encryption products such as Skyhigh Net-
works [149] and CipherCloud [53]. Most of these solutions employ legacy-friendly
SE constructions to ensure that the existing applications can operate as before.
Recently, Ionic [101] presented an encrypted search system with an advanced
query construction mechanism based on EC-OPRF [36].

Most of these systems either proposed new SE constructions or employed fixed
data protection tactics to provide their functionalities. However, the key goals of
DataBlinder are to present a middleware solution allowing software developers
to configure a notion of security with respect to their required operations at the
application level, and it is not dependent on any particular database. Moreover,
it facilitates the future tactic extensions via its architecture through SPI’s.

4.4 Conceptual abstraction models

Our research approach considers two stakeholders: (1) software developers who
aim to persist data in the database using regular operations in applications,
and (2) security experts who want to secure these operations. In this section,
we present two conceptual abstraction models accordingly: the data protection
tactic model to abstract and reify different generic concepts found in most
tactics, and the data access model to enable configurable tactic selection at
run-time. In our research approach, we assume that sensitive data is in the
form of a document that contains several fields. A database consists of several
collections, and each collection is composed of many documents.
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4.4.1 An abstraction model for data protection tactics

Each document is composed of fields. For example, a health record document
may contain several fields such as a description, a sickness type and a numeric
value indicating a measurable parameter like blood pressure. To protect sensitive
values of the fields and yet support certain operations to clients, advanced data
protection tactics are used. Each tactic typically offers a very limited number of
operations, and as a result, a field employs multiple tactics to satisfy functional
requirements of an application. As depicted in Fig. 4.1, a tactic has a set of
internal operations. Each of these operations comes with a leakage profile and
several performance metrics. Our abstraction model is inspired by the recent
SoK paper of Fuller et al. [71] published in IEEE Security and Privacy 2017.

Tactic operations. Tactics include one or several operations [71]. In general,
(i) the init operation to set up cryptographic primitives and initial provisioning
of data structures and databases, (ii) the update operation for dynamic tactics
to add, update and delete documents, and (iii) the query operations to perform
tactic-specific functionalities such as boolean search. The query operation,
illustrated in Fig. 4.1, can be various search or aggregate queries depending on
the given protection tactic.

Leakage profile. Data protection tactics in such systems rely on secure data
structures, e.g., an encrypted index, to facilitate data retrieval in an efficient
way. These systems, notably their constitutive data structures, are susceptible
of leaking (meta-)information. For example, a commonly used structure is an
encrypted inverted index. Leakage could be something trivial such as the result
size of every possible search word. There are a wide range of leakage profiles
with different levels of severity. Encrypted indexes usually contain information
about searchable keywords and document identifiers. Searchable keywords are
derived from the content of the documents. Document identifiers uniquely point
to the documents in a database.

To illustrate several types of leakages, we assume that, as an example, there are
three tactics with their searchable data structures roughly similar to a reverse
index model. In a database, documents have unique identifiers (id1,...,id6) and
a set of words (w1,...,w5) as search terms extracted from the document contents.

In Table 4.1 for instance, searching for w4 results in document id2 and id4, where
F means a pseudorandom function (PRF) such as a keyed hash function like
HMAC. Prior to any query, the construction leaks the document identifiers, the
number of documents, the number of words, the size of documents, frequency of
all words, and co-occurrence information for all words between documents. Upon
issuing a search query, the search result (document identifiers) and equality
pattern of the search terms (but not the value) are leaked to the server. The



CONCEPTUAL ABSTRACTION MODELS 81

Figure 4.1: Abstraction model of data protection tactics for tactic providers

former and the latter are called access and search patterns. Upon update
queries (addition or deletion), the server learns which document identifiers are
being changed and whether these changes are reflected in the index and the
search results in comparison with prior searches. This leakage is related to the
backward and forward privacy [46].

words identifiers
F (w5) id3, id1, id5
F (w1) id2
F (w4) id2, id4
F (w3) id1, id4, id6

Table 4.1

words identifiers
F (w5) id3, id1, id5

F (w1) id2

F (w4) id2, id4

F (w3) id1, id4, id6

Table 4.2

words identifiers
F (k5, 1) id3

F (k5, 2) id1

F (k5, 3) id5

F (k1, 1) id2

F (k4, 1) id2

F (k4, 2) id4

F (k4, 1) id2

F (k4, 2) id4

F (k4, 3) id6

Table 4.3

Table 4.2 illustrates a further secured index by encrypting the search results
(identifiers, denoted by idi), where the encryption function is a semantically
secure symmetric encryption and encryption keys are derived from the words.
This construction protects the value of identifiers, the size of documents as



82 DATABLINDER: A DISTRIBUTED DATA PROTECTION MIDDLEWARE SUPPORTING SEARCH AND
COMPUTATION ON ENCRYPTED DATA

well as co-occurrence information of the search terms between documents, but
it still leaks the number of search words and their frequency. Moreover, the
index allows the server to further learn the search and access pattern and it is
not backward and forward private. Table 4.3 demonstrates a slightly different
searchable encrypted data structure offered by a different protection tactic. In
this construction, a set of cryptographic keys (k1,...,k5) are derived from the
words (i.e. ki is derived from wi), and the table is built based on the keyed
hash of separate counters for each word. To search for a term, the client needs
to produce a derived key for the search term and provide the server with that
key. Prior to any query, this scheme, unlike others, protects the number of
words and the frequency of them. However, it also leaks the access and query
patterns, and it is not forward and backward private in case of update queries.

Prior work presented various formal security definitions for searchable
encryption [28, 77, 56], and other work categorised the leakage levels [42].
We employed the leakage taxonomy presented by Fuller et al. [71] for the
reification of this concept due to its generality and applicability.

To present a middleware solution, having a generic classification of leakage
profiles does not capture all specific cases for each operation. For example,
the update operations (create, delete, and update) are sensitive. They might
leak information about the future or the past. Certain leakages occur prior to
any query in setup time (having a snapshot of the database) or at query time
such as boolean queries. The pragmatic reification of data protection level in a
data-access middleware motivates the idea of presenting the leakage profiles on
a per-operation basis.

The leakage level of data protection tactics can be concretely categorised into
five levels [71]:

(i) structure, i.e. nothing is leaked except the size of the entire data structure
or things which can be hidden by padding,

(ii) identifiers, i.e. past and future access patterns of identifiers are leaked,

(iii) predicates, i.e. complex query predicates leak information such as
intersection of a boolean query with a known range,

(iv) equalities, i.e. which objects have the same value in the system, and

(v) order, i.e. the numerical and lexicographic order of the objects are leaked.

The leakage level of order is the highest, and structure is the lowest (the most
secure one).
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Performance metrics. Each tactic operation also comes with a performance
cost impacting clients’ experience. As illustrated in Fig. 4.1, the performance
of data protection tactics can be measured and quantified by certain types of
metrics related to the underpinning algorithms, network, and storage overheads.
Tactics can employ various algorithmic designs to securely execute operations,
which in turn may affect performance differently, e.g., tree based search vs.
exhaustive search. Those decisions consequently have impact on networking
infrastructure in terms of data sent and received between clients and providers.
Besides, tactics may have severe impact on the locality of objects, read efficiency,
the size of data storage both at the client and the server side. For example,
to improve security by a tactic, relevant data might not always reside in close
proximity on a disk or a partition. Lastly, the type of cryptography has
a considerable impact on computational resources. For instance, public-key
cryptography and homomorphic encryption used by some tactics are significantly
expensive in comparison to symmetric encryption. These metrics are mostly
inter-related to each other.

4.4.2 An abstraction model for protected data access

Data protection tactics should be applied to documents with per-field granularity.
Fig. 4.2 illustrates the data access abstraction model for sensitive fields, which
primarily includes (i) which data-access and aggregate operations can be
performed on a field, and (ii) up to which level sensitive fields are protected.
This abstraction model is aimed for application developers.

Each field of a document can be annotated with the model illustrated in Fig. 4.2.
For instance, consider a medical document containing the patient’s age. We
can select its sensitivity level, and assign a Class 2 protection level (explained
later). We can then configure what operations are needed, in this case Average
and Equality Search. The middleware employs the appropriate implementations
at runtime accordingly in order to meet the client’s requirements.

Query functionality. A data access middleware should in general offer all
required query functionalities to the client applications. Fuller et al. [71] present
a set of base operations built upon relational algebra, associative arrays and
linear algebra which are essentially the foundation of SQL, NoSQL, NewSQL and
polystore systems. We employ this categorisation of base operations as query
interfaces in order to satisfy the data-access requirements of many applications.

The core functionalities of the query interfaces rely on key operations of
associated arrays [138, 80] and basic functions of persistent storage systems [134],
which are namely (i) create, (ii) read, (iii) update, and (iv) delete. The read
operation goes beyond fetching a document; it comprises more complex search
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Figure 4.2: Data access model of the sensitive fields for application developers

operations with predicates specifying conditions such as (i) equality, (ii) boolean
queries (conjunction, disjunction and negation), (iii) range, and (iv) others.
These operations can be combined with aggregate functions such as sum, average,
count, maximum, minimum, and so on. Each operation could be mapped to
one or more data protection tactics.

Data protection level. Unlike the model of data protection tactics in which
leakage profiles are specified per operation, the data access model specifies a
protection level per field. In the previous model (Fig. 4.1), the reification of
per-operation leakage facilitates the extensibility of the middleware architecture.
However, in the data access model (Fig. 4.2), it is meaningless to concretise a
per-operation protection level for each field. For example in a medical document
case, the patient’s age is set as sensitive, and the equality and the range-search
are set as the required functionalities. If two different data protection tactics
are employed by the middleware to satisfy the operational requirements, the
one which supports range queries leaks more information compared to the other
one. In other words, the protection level of a field is equal to the tactic with
the weakest guarantees regardless of the strength of other tactics applied to it
(i.e. a chain is only as strong as its weakest link.). We therefore conclude that a
data-protection level per field is appropriate for the data access model.

We classify data protection tactics into five classes (Class1,...,Class5) of
protection guarantees. Each of these classes corresponds to its counterpart in
the data protection model. Class1 has the least leakage. However, the model
is sufficiently open to be realised differently; the selection of protection tactics
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has to be controlled through security policies.

4.5 Architecture and implementation

In this section, we present an overview of the DataBlinder middleware
architecture, and we further describe the extensibility and pluggability of
the architecture by introducing tactic commonalities and service provider
interfaces (SPI).
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Figure 4.3: Middleware deployment view

Deployment topology and system overview. The setting consists of a trusted
zone, which is the application owner’s datacenter, and an untrusted zone
composed of external cloud providers (see Fig. 4.3). In the trusted zone,
different types of applications can benefit from external cloud-based storage
through a data protection gateway. The current design of DataBlinder is based
on the microservice architecture. That means DataBlinder acts as a gateway, a
standalone service, to serve various types of other services within the on-premise
data centre of application service providers. The DataBlinder middleware along
with its required assets such as data protection policies and storage facilities
are deployed within the gateway. There are several interfaces exposed to the
applications, which are namely a Schema interface to enable clients to define and
annotate data schemas and data protection metadata, an Entities interface to
allow regular data-access operations, and a Keys interface to allow the system to
integrate with on-premise key management systems (e.g., HSM). All data-access
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operations are trusted, and the inter-application communications within the
datacenter follow regular security and access control mechanisms.

The untrusted zone consists of several cloud providers and the communication
channels between the application owner’s datacenter and these external resources.
The middleware is distributed since SE tactics are inherently distributed.

4.5.1 The middleware architecture
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Figure 4.4: Middleware component diagram.

Fig. 4.4 illustrates four subsystems of DataBlinder. Depending on the
deployment location, either in the trusted or the untrusted zone, different
interfaces and components are employed. (i) The middleware-core subsystem is
responsible for the abstract execution of the persistence logic, e.g., Create Read
Update Delete (CRUD) operations, and adaptive and dynamic tactic selection
at run-time. (ii) The data protection metadata subsystem is responsible for the
persistence and retrieval of per-application database schemas and data protection
annotations. The schema management component also validates whether the
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application documents correspond to the configured schemas. (iii) The tactics
SPI subsystem is responsible for providing concrete tactic implementations,
comprising a set of gateway and cloud implementations. (iv) The resources
subsystem is responsible for enabling the access to external resources such
as cryptographic key management systems, and on-premise or cloud-based
resources such as storage systems.

4.5.2 Data protection metadata specification and verification

In this section we present (1) how document schemas and data protection
annotations are managed in a per-application basis; and (2) how we concretely
employ and extend the JSON-Schema specification [204] for documents towards
abstraction models (see Section 4.4.2).

Schemas & metadata per application. DataBlinder manages document
schemas and data protection annotations per application. In brief, the
middleware can serve a set of applications. Each application is composed
of a number of databases, and each database is a set of collections. In document-
oriented databases, collections are akin to tables in relational database systems.
The schema c of a collection describes the data model of that collection, which
is concretely based on JSON-Schema specification and our extensions. For
example, in a medical application composed of a database for medical history,
a lab measurement is a collection. Data models of collections are managed per
application with per-collection granularity.

JSON-Schema with data protection annotations. DataBlinder adds the
notion of data protection per field to the JSON-Schema specification. JSON-
Schema is a document which describes the structure of a JSON document [204].
Each schema document defines a set of properties annotated with different
information such as type, whether a property is required, maximum value, and
so on. At runtime, the instances of documents get validated against the schema
document.

JSON-Schema is solely responsible for describing the JSON document structure,
and offers a means of validation. To add the notion of data protection to the
JSON-Schema in the context of DataBlinder, our contributions are twofold:

• Sensitivity annotation. In Section 4.4.2, a data access abstraction model
is presented. To add the data protection notion, we introduce a new
annotation called sensitive. The keywords and the structure of these
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annotations will be per property and based on the presented model in
Fig. 4.2. The details are explained later in this section.

• Schema validation and verification at runtime. Once properties of JSON
documents are annotated with sensitives fields via JSON-Schema, the
JSON-Schema Validation process should be extended in a way that the
validation process can be performed correctly and take these annotations
into consideration at runtime (syntactically and semantically).

To present our extensions more formally, the syntax of the data protection
annotations are provided below with the extended Backus-Naur form
(EBNF) [103]. For readability, terminals are written in bold.

<sensitive> ::= sensitive : {<pairs>}
<pairs> ::= <protection>,<operations>,<aggregates>
<protection> ::= protection :<protClass>
<protClass> ::= class1 | class2 | class3 | class4 | class5 | none
<operations> ::= operations : [<operation>(,<operation>) ∗ ]
<operation> ::= insert | update | delete | search_eq | search_bool
<aggregates> ::= aggregates: [<aggregate>(,<aggregate>) ∗ ]
<aggregate> ::= sum | avg | min | max | count

Pezoa et al. [163] present a complete formal grammar of JSON-Schema. The
above listing describes the syntactic definition of our extensions.

Semantic validation. The metadata component should be capable of
semantic validation of data protection annotations. The standard [103] defines
six types of properties: strings, numbers, boolean, objects, arrays and null.
Annotating a sensitive property to use a tactic should be semantically feasible;
for example, the combination of a boolean type with an aggregate function based
on an additive homomorphic encryption scheme does not have any meaning. The
schema management component controls these aspects. However, no thorough
validation is covered in this dissertation since it requires a deep investigation of
all corner cases. Therefore, this angle of the middleware is left for future work.

4.5.3 Extensible and pluggable architecture

In this section, we present a more concrete description of the extensibility and
pluggability of the DataBlinder architecture by introducing the practical aspects
of tactic commonalities, and tactic selection at runtime.
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An extensible software architecture is the one embracing the future changes,
where its components can be extended without (or minimum) modification
of the core functionalities. Weck [200] introduces an extensible component
architecture with a set of properties: (1) users can compose the components
at runtime; (2) components are developed by different people; (3) components
should work with or beside each other (or at least with no interference); and, (4)
components should be extensible in the directions which have been anticipated
and prepared for (also called dimension of extension). Such properties can be
satisfied with design rules for component developers, typically leading to certain
abstractions. In Section 4.4, we presented two abstraction models to reify
certain concepts about protection level, performance and query expressiveness.
The models enable the application developers to compose their required tactics,
and the tactic developers to define their constructions (see Section 4.5.2).

Tactic commonalities. Most tactics share common properties. They are all
distributed in the sense that two or more parties are involved in performing
a high-level operation such as boolean search. The comprehensive surveys
on SE [165, 28, 71] distill their life cycle into three key operations: setup for
key material generation and initial index provisioning, update for dynamic
constructions with the operations like deletion, addition and modification, and
query for constructing tokens and performing the given function.

Each data protection tactic includes a subset of operations. Each of these
operations is a distributed protocol. As a result, tactics share a common
framework in the DataBlinder architecture supporting: (1) gateway and cloud
implementations per operation, (2) cryptographic primitives as building blocks
(e.g., PRF), (3) key management integration, (4) communication channels for
transferring protocol data, and lastly (5) data repository services available
to both the gateway and the cloud implementations to satisfy tactic-specific
requirements to construct distributed secure indexes.

Tactic SPI. The DataBlinder protection tactics can be extended by leveraging
a set of interfaces. Each of these interfaces exposes a high-level operation defined
in the data-access abstraction (see Fig. 4.2), including a gateway and a cloud
version as described earlier in this section and Fig. 4.4. The first interface which
is mandatory to implement for all tactics is the setup interface. The other major
but optional operations include CRUD, various search and aggregate queries.
Each implementation receives all dependencies required to perform its protocol
as listed in the commonalities. Table 4.4 lists the interfaces for a large subset
of the high-level operations.
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Gateway Interfaces Cloud Interfaces

Insert Insertion, DocIDGen, SecureEnc Insertion
Update Update, DocIDGen, Retrieval Update, Retrieval

SecureEnc
Delete Deletion Deletion
Read Retrieval, SecureEnc Retrieval
Equality Search EqQuery, EqResolution EqQuery

<Read>
Boolean Search BoolQuery, BoolResolution BoolQuery

<Read>
Aggregate <Query>, AggFunction

AggFunctionResolution

Table 4.4: Service Provider Interface (SPI). The implementations of these
interfaces get loaded dynamically at runtime. <Read> and <Query> denote a
set of interfaces required for a retrieval and a search operation.

Tactic selection at runtime. The SPIs are implemented by security experts.
The middleware loads the right implementations dynamically at runtime using
the strategy design pattern [74]. Fig. 4.5 and Fig. 4.6 illustrate a high-level
description of the setup and the search protocol, where S is a schema; Pr is
a search predicate; P is a data protection policy; D is a set of decisions made
by the policy engine; PLg and PLc are gateway and cloud payloads; ch is a
communication channel; STs is a list of search tokens; ctx is the context; EIDs
are encrypted document identifiers; IDs are plaintext document identifiers; and
SO, QO and RO are setup operation, query operation and resolution operation
tactics which are dynamically loaded based on the decisions and the context.
Lastly, args are the required services described in the commonalities section
provided by the middleware such as key management service, and cryptographic
building blocks, and so forth.
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In the setup protocol, a document schema with sensitivity annotations is
submitted to the middleware. First, the data protection policies are enforced
to select which tactics are appropriate for which field for the given application
requirements (see Fig. 4.7), and the end result is a list of decisions D. In fact, the
characteristics of each tactic are reflected by the rules of the policies; therefore,
the actual tactic selection based on the abstraction models happens at this stage.
Consequently, an implementation for the setup operation can get dynamically
loaded at runtime based on D. Afterwards, the setup implementation is executed
by the middleware and the payload is transferred to the cloud. As a result, the
same set of tactics are selected with no policy enforcement overhead and the
protocol continues the execution.

In the search protocol, applications issue queries by sending a search clause
containing predicates (Pr). Search protocols, and query protocols in general,
employ decisions (D) made already in the setup phase. The right search tactic
is loaded similar to the previous protocol, and a set of search tokens (STs)
are generated as a result. A normal secure search tokens should not leak any
information about the search keywords (e.g. based on IND-CKA2 [56]). These
tokens are transferred to the cloud-side in a payload (PLg) through the channel.
Likewise, the cloud-side query operation is loaded and executed. The typical
implementation should query the secure index using STs and fetch the encrypted
document identifiers (EIDs). The result is sent back to the gateway side, and a
resolution operation deciphers the document identifiers.
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4.6 Use case validation and evaluation

To validate and evaluate the concepts and architecture of DataBlinder, we seek
to answer:

Q1 How broad and extensible is the architecture, in particular SPI’s, to
support the state of the art data protection tactics?

Q2 What impact on performance does the DataBlinder architecture have?

Q3 What is the impact of running cryptographic code within User Defined
Functions (UDF) inside NoSQL database engines?

4.6.1 Proof of concept development

DataBlinder supports two modes of execution: gateway and cloud, implemented
using Spring Boot, i.e., ~ 6,000 lines of Java 8. We employed libraries such as
Bouncy Castle for basic cryptographic primitives (e.g., AES/GCM, RSA/OAEP,
HMAC-SHA256, etc.). We further leveraged the Clusion [115] project to
provide several data protection tactics,and Javallier [193] for the Paillier [159]
cryptosystem. The DataBlinder data protection tactics have been developed
using these building blocks. We employed document-oriented databases, e.g.,
MongoDB and Elasticsearch, to store documents and indexes. We also employed
a key-value datastore, e.g., Redis, in a semi-persistent durability mode to take
advantage of basic constructions such as persistent sets, maps, and so on, to
build custom indexes.
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Protection level SPI*

Operation Scheme C# Leakage G C Challenge Impl.

Equality DET 4 Equalities 9 6 - #
Search

Mitra [46] 2 Identifiers 7 5 Local storage #
Sophos [29] 2 Identifiers 6 4 Key management #
RND 1 Structure 6 4 Inefficiency #

Boolean BIEX-2Lev [109] 3 Predicate 8 5 Storage impl. [115] %
Search complexity

BIEX-ZMF [109] 3 Predicate 8 5 Storage impl. [115] %
complexity

Range OPE [25] 5 Order 3 3 [131] %
Query

ORE [26] 5 Order 3 3 [119] %

Sum Paillier [159] - - 3 3 Key management [193] %
Average Paillier [159] - - 3 3 Key management [193] %

Table 4.5: These cryptographic constructions have been implemented and integrated
to DataBlinder using the tactic interfaces. ∗ denotes the number of service interfaces
required in the implementation (Table 4.4); # denotes that we implemented the
construction; % denotes that the implementation is slightly modified; C# is a class
number; C and G are the abbreviations of Cloud and Gateway.

Tactic integration. We implemented and integrated several tactics using
the proposed achitecture based on the SPI pattern (see Table 4.5). The
implementation covers a broad range of tactics, having various properties,
such as different protection levels, forward privacy (e.g. Mitra and Sophos),
deterministic and probabilistic encryption (e.g. DET and RND), read and space
efficiency (e.g. BIEX-2Lev and BIEX-ZMF), data order (e.g. ORE and OPE),
and HE (e.g. Paillier).

4.6.2 Healthcare use case

To validate the middleware, we present a real-world example of the industry-
standard FHIR-compliant [95] medical documents. We annotate the schema
based on some assumptions regarding protection level and functionalities.

Example. Observations are measurements and assertions about patients [95].
In the following document, the amount of Glucose observed in a blood test is
illustrated. Most of these fields are assumed to be sensitive since they can be
the indicators of diabetes.
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{
id : f001 ,
i d e n t i f i e r : 6323 ,
s t a tu s : f i n a l ,
code : Glucose ,
sub j e c t : John Doe ,
e f f e c t i v e : 1359966610
i s su ed : 1362407410 ,
per former : John Smith ,
va lue : 6.3 ,
i n t e r p r e t a t i o n : High

}

Sensitives Annotations
status C3, op [I, EQ, BL]
code C3, op [I, EQ, BL]
subject C2, op [I, EQ]
effective C5, op [I, EQ, BL, RG]
issued C5, op [I, EQ, BL, RG]
performer C1, op [I]
value C3, op [I, EQ, BL],

agg [avg]

Sensitives Tactic Selection Reasons
status BIEX-2Lev Boolean & cross-field
code BIEX-2Lev Boolean & cross-field
subject Mitra Identifier protection level
effective DET, OPE Range queries
issued DET, OPE Range queries
performer RND Structure protection level
value BIEX-2Lev, Paillier Cloud-side averages

C is a class; op is a list of operations; I,EQ, BL and RG are insertion, equality,
boolean and range queries; agg is the list of aggregate functions; and avg
is an average operation. DataBlinder enforces data protection policies to
perform tactic selection, and it abstracts away the complexity of underpinning
cryptographic protocols. Therefore, software developers only require the
necessary knowledge about the data-access abstraction model. Moreover, the
middleware decouples the applications built on top, in the sense that the
evolution of the tactics has limited impact on the applications with respect to
the functionality and data protection requirements.

4.6.3 Performance evaluation

We evaluate the overall performance overhead of DataBlinder in comparison to
the scenarios where: the application only does data operations and does not use
the middleware or any tactic (SA); the data protection tactics are implemented
hard-coded into the application without using the middleware (SB); and the
application uses DataBlinder to enforce the required data protection tactics
(SC).

Set-up. To evaluate the performance overhead of DataBlinder, we developed
the middleware as presented in Section 4.6.1, and we deployed an instance of
it on the Openstack private cloud in gateway mode and another instance on



USE CASE VALIDATION AND EVALUATION 95

a public cloud provider (Microsoft Azure) in cloud mode. Our underpinning
Openstack compute node comes with 2.60 GHz Intel Xeon E5-2660 processors
and 128GB DDR3 memory. The gateway VM instance has 8 vCPU cores and
16GB of RAM. The cloud VM instance has 4 vCPU cores and 16GB RAM. We
deployed an instance of Redis in a semi-durability mode on both sides and an
instance of MongoDB on the cloud. We deployed an instance of Locust [126] load
generation and benchmarking framework in a third VM instance on Openstack
in the trusted zone of the experiment.

Results. We performed 3 experiments using the medical document application
introduced in Section 4.6.2. There were in total 8 tactics involved in the
benchmarks, namely Mitra, RND, Paillier, and five times DET. Figure 4.8
illustrates insert and equality search operations, as well as the overall throughput.
There is 44% overall throughput loss by employing data protection tactics.
Adding our middleware to this setting causes only 1.4% additional overall
throughput loss in comparison to the scenario where tactics are inflexibly
integrated into the application. The following table further shows the overall
average latency, and 50th, 75th and 99th percentile latency. Based on our
observation, the execution of aggregate protocols, namely the Paillier PHE, had
a considerable impact on these numbers.

Scenario (latency) 50th 75th 99th Average
SA 62ms 81ms 140ms 85ms
SC 110ms 2500ms 13000ms 828ms

Aggregate 105ms 1700ms 5600ms 1114ms

4.6.4 Cryptographic functions inside database engines

Most protection tactics, especially homomorphic encryption, require some
operations to be performed next to the data stored in the cloud 2. To investigate
the feasibility and applicability of running cryptographic functions within the
NoSQL database engines in the scope of computing on encrypted data, we
have implemented the homomorphic addition of the Paillier cryptosystem as
User Defined Functions (UDFs) directly in the underlying database engine.
In the current implementation, UDFs are employed for two popular NoSQL
databases: Cassandra and MongoDB. The high level homomorphic addition
function entails multiplication of the encrypted values m1 and m2. For brevity,
keys and random values are omitted.

2This contribution has been carried out by the author of this dissertation in the scope of
the CryptDICE paper [168]
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Figure 4.8: Per-operation and overall throughput comparison. Each experiment
included ~151k requests, ~50k documents, ~350k secure index operations, and
1,000 benchmark users with a balance between read (equality search protocols),
write (insertions and secure indexing) and aggregate operations (search and
homomorphic calculation of averages). In addition to the computational and
search complexity of each tactic, the Paillier queries were executed ~50k times
per run, having a considerable impact on the throughput of the experiments
involving data protection tactics (blue and green).

Enc(m1) · Enc(m2) mod n2

The implementation is based on Javallier [193], a Java library for the Paillier [159]
homomorphic scheme. These UDFs can be deployed in MongoDB and Cassandra
through both the middleware automatically and the command-line interface
manually. In MongoDB, UDFs must be implemented in JavaScript. The
multiplication of large integer values requires special types such as BigInteger
and MongoDB does not support such types for UDFs. Therefore, we employed
a custom implementation of this missing type [162]. The function he_add
is added in the system database via a user with privileged access rights. To
incorporate these UDFs in queries, we employed the existing Map-Reduce3

functionality of MongoDB. The map function in MongoDB applies to each input
document and emits key-value pairs. For keys with multiple values, MongoDB
applies the reduce function, which collects and condenses the aggregated data.
Listing 4.1 illustrates an example query that sums up the amounts of invoices
per person in the Billing-as-a-Service SaaS application case.

In Cassandra, we implemented the homomorphic addition as a user-defined
aggregate function (UDA). A UDA is typically composed of two functions: a

3https://docs.mongodb.com/manual/core/map-reduce/

https://docs.mongodb.com/manual/core/map-reduce/
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Listing 4.1: An example MongoDB MapReduce query using he_add function
which implements Paillier addition.
db . i n v o i c e s . mapReduce (

func t i on ( ) {
emit ( t h i s . name , t h i s . amount ) ;

} , f unc t i on ( key , va lue s ) {
var t o t a l = va lue s [ 0 ] ;
f o r ( var i = 1 ; i < va lues . l ength ; i++){

t o t a l = he_add( to ta l , va lue s [ i ] ) ;
}
re turn t o t a l ;

}
) ;

state function to compute the multiplications on each row and update the query
state with the results for the next row, and a final function to perform some
actions at the end such as division for calculation of averages. A typical UDA is
applied to data stored in a table as part of query results. To illustrate the idea,
the following query goes through all of the invoices in the Billing-as-a-Service
use case and calculates the sum of all amounts.

SELECT homsum(invoice_amount, invoice_nsquared)
FROM invoices

Cassandra provides the developers with a wider spectrum of programming
languages. We developed the function in Java and leveraged its native
BigInteger type.

Performance evaluation. The database functions are evaluated in a client-
server environment where the client node (running the benchmarking application)
interacts with the server node (running the database engine). In our
experimental setup, the client node is equipped with Intel Core i7-865U CPU
@1.90 GHz @ 2.60 GHz processors with 16 GB RAM and Windows 8 operating
system installed. The server node, which is running the database engine is
deployed on a private Infrastructure-as-a-service (IaaS) cloud, which is built
using OpenStack.

In Cassandra, the computation of a UDF that is performed inside the database
engine performs better than the scenario in which the computation is done
outside of the database, e.g. inside a VM. For example, to compute homsum
on 500K encrypted invoices, the computation inside the database engine took
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26,471s and the time to execute in a VM next to the database instance took
53,587s.

Applicability and usability analysis. We achieve a significantly better
performance when the computation is moved as close as possible to the data.
That means, aggregate queries, which are executed over homomorphically
encrypted data from inside the database engine are considered to be better
prospects for achieving high performance. For this reason, the approach has
already been used by other prototyped systems. For example, CryptDB [166],
the seminal work in this area, implemented the majority of its functionalities
such as adjustable encryption and homomorphic encryption as UDFs in the
MySQL database. However, our analysis show that the approach is sub-optimal
due to concerns regarding:

Documents Cassandra MongoDB
5K 0.441 55.238
10K 0.587 105.994
20K 1.283 255.207
40K 2.058 502.592
80K 3.844 Out of memory error
100K 4.375 Out of memory error
500K 26.471 Out of memory error

Table 4.6: Total execution time in seconds to compute the aggregations,
namely homsum in Cassandra and he_add in MongoDB. The mode in which
the aggregate function is executed over homomorphically encrypted financial
documents from inside the database engine for the MongoDB database leads to
the “out-of-memory” problem.

1. Database-specific performance optimality: The performance is database-
specific as the approach where the computation is performed from inside
the database engine does not guarantee the best performance for all NoSQL
databases. For example, we have also employed UDFs in MongoDB and
performed all of the experiments again. The results are presented in
Table 4.6, which show that this mode of computation performs worst in
most cases. In some cases, it also leads to the out-of-memory problem. For
instance, to compute he_add on 40K encrypted invoices, this approach
takes 502.592 seconds, which is about ~250 times slower than when
compared to the results of the Cassandra database. Similarly, we
encountered the out-of-memory problem when we tried to compute he_add
on more than 40k (i.e. from 80K up to 500K) encrypted invoices. The
reason lies in the fact that values encrypted by homomorphic encryption
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schemes become considerably larger than their plaintext. Therefore, it
is crucial how a database system manages the memory and the states in
case of an evergrowing homomorphic addition. That varies from database
to database depending on the encryption scheme and the architecture of
databases.

2. Limited applicability: The implementation of UDFs for cryptographic
protocols is not always straightforward. Apart from probable security risks
(e.g., side-channel attacks), the set of programming primitives offered by
programming languages in databases is sometimes limited for our purpose.
For example, MongoDB functions should be written in JavaScript. The
Paillier homomorphic addition involves multiplication of two relatively
large integers, and the size of these integers is dependent on the key size.
A safe implementation should use big integers to avoid overflows. At the
time of implementing he_add, JavaScript did not support such primitives.
Therefore, we were obliged to use a custom implementation of arbitrary-
length big integers. Furthermore, gaining access to cryptographically
secure randomness can also be a challenge. In the MongoDB case,
employing external libraries is infeasible, and if external libraries are
needed, the source code must be brought to the function implementation.

3. Increased maintainability of code: The introduction of external libraries
as function implementation within databases may cause unwanted
implementation bugs leading to security vulnerabilities. On top of that,
it may make the debug and update process cumbersome at scale. Besides,
monitoring the database functions at run-time through logging is not a
trivial task too. Programming language diversity of database functions
causes vendor lock-in and hinders implementation portability and re-
usability. Each database comes with its requirements, environment
and programming language. Therefore, user-defined functions must be
developed and maintained per database. For example, MongoDB supports
JavaScript; Redis supports Lua; and Cassandra supports several languages
including Java.

In a cloud-native setting where service providers want to employ hosted
databases, most NoSQL databases do not offer custom functions due to security
and practical reasons. An interesting direction for research would be employing
the Function-as-a-Service (FaaS) paradigm although FaaS does not run within
databases. However, exploring FaaS-based approaches is not in the scope of our
research in this dissertation.
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4.7 Conclusion

We presented DataBlinder, a distributed data access middleware that supports
fine-grained data protection configuration on application data towards crypto
agility. Our performance evaluations showed that DataBlinder offers this
flexibility at the cost of 1.4% overall throughput loss in comparison to a scenario
where the tactics are inflexibly integrated into an application without the
middleware.

The current architecture can be deployed as a cloud-native service, where the
gateway is a stateless data access middleware (e.g., ORM [156]). However,
there exist some secure SE tactics, e.g. Sophos [29], requiring keeping the state
at the gateway. A challenging research direction towards secure cloud-native
systems is to design efficient stateless SE schemes. The current architecture
does not take other classes of constructions, e.g., MPC, Oblivious RAM, and
TEE, into consideration. It is interesting to explore and abstract their new
tradeoffs, different trust models and various execution frameworks.



Chapter 5

Conclusion

This chapter concludes this dissertation. We first summarise the challenges,
requirements and contributions in Section 5.1. Section 5.2 discusses the
limitations of our contributions and presents the future directions for researchers
and practitioners with regards to outsourcing data and computation to the
cloud.

5.1 Contributions

This dissertation has addressed several challenges in the scope of outsourcing
computation and data to the cloud as outlined in Chapter 1. In this section,
we provide a summary of the approaches used to tackle the challenges for each
contribution. Table 5.1 presents an overview of the contributions, key challenges,
approaches, and evaluations.

Cold start mitigation. The first contribution combined three techniques to
mitigate the cold-start latency and reduce the time to start up application
containers and pods in Kubernetes. Low cold start latencies are crucial for
applications that require elastic scaling, and most importantly when elastic
scaling is combined with various SLOs such as the job completion deadline. The
layered-based library sharing, i.e. the first technique, encapsulates the external
components and software dependencies of an application in various layers of
container images; the second technique pre-creates the network infrastructure of
application containers within pods to mitigate network setup latency when pods
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Contribution Key challenges Approach & Evaluation

Cold start
mitigation
techniques

Latency caused by
bootstrapping pods,
preparing software
environments and
user’s code affecting
applications with
deadline-driven SLOs

Extensive experiments using
layered-based library sharing,
pools of reusable network
containers with imperative
configuration management

InfraComposer
middleware

Engineering workflows
with long-running
executions & repetitive
deployments with
complex capacity
planning

An adaptive and reflective
middleware that uses a step-wise,
policy- and history-driven
approach forming a MAPE-K
loop to optimize the deployment
plans; validated extensively with
2 application cases in aeronautics.

DataBlinder
middleware

Computing and search
on encrypted data with
diverse protection
tactics; complex and
error-prone integration
and implementation;
crypto agility

A distributed data access
middleware with an extensible
architecture via the SPI pattern
offering encrypted search and
partially homomorphic encryp-
tion; validated and evaluated
with FHIR-compliant medical
data; validated the feasibility
and applicatbility of using
user-defined functions for ho-
momorphic encryption within
Cassandra & MongoDB

Table 5.1: Overview of the contributions, key challenges, approaches and
evaluation
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are supposed to scale-out; and, the third technique employs imperative scaling
in Kubernetes, meaning that our scaler communicates directly with the worker
nodes and bypasses the Kubernetes controller components. These techniques
are explained in Chapter 2.4.

We performed a series of extensive performance evaluations to investigate the
effectiveness of these techniques in various combinations. Our findings show
that (i) the library sharing approach results in a large reduction in the start-up
time of software dependencies, (ii) pre-creating network containers has greater
impact when multiple application containers are started in parallel, (iii) the
imperative configuration approach introduces start-up time determinism and
predictability, making this approach more reliable for applications with SLOs
such as job completion deadlines.

InfraComposer. Engineering workflows are composed of various steps, and
each step is executed by different software. These workflows aim to simulate
and optimise different designs (e.g. MDO), and to achieve this, these workflows
are run numerous times iteratively. Execution of these experiments might
sometimes take hours or days. Engineers are faced by the following set of
non-trivial challenges. First, they must manage a complex cloud deployment
required to run the experiments themselves. Second, the cloud deployment
requires complex capacity planning to reduce the experiment completion time
for each iteration.

This contribution took a step-wise approach. The optimal deployment of the
workflows is initially driven by the engineer’s annotations, and afterwards
based on the execution history of the prior experiments. The middleware and
the underlying monitoring system form a MAPE-K loop for optimising the
deployment plans. InfraComposer, at the heart of the loop, uses a policy-driven
approach to reason about the previous executions. Therefore, engineers are
enabled to re-run the workflows and benefit from better deployments tailor-made
to the problem at hand.

We implemented and validated the InfraComposer architecture in two industrial
use cases. To achieve this, InfraComposer employed the OASIS Topology and
Orchestration Specification for Cloud Applications (TOSCA) [195] to compose
deployment plans in a modularised and re-configurable way; the deployment and
resources meta-models were realised and reified through this mechanism. As
validation and evaluation, we presented specific adaptive deployment scenarios
in real life in the domain of aeronautics. We validated how both the reflective
and the adaptive capabilities of the middleware can cope with each scenario.
Our industrial research partner reported [133] that InfraComposer reduced the
set-up time. Their workflow performed an extensive design space exploration
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analysis, namely the optimisation of the 3D-routing of an automotive cockpit
wire harness. Moreover, it improved the scalability and flexibility, and increased
the performance of the execution infrastructure by overall ~77.5%.

DataBlinder. Outsourcing sensitive data to the cloud is not a trivial task if
the cloud provider is considered to be untrusted. Therefore, if cloud providers
do not have access to the encryption keys, data encryption renders the majority
of the data operations useless. To protect sensitive data in a pragmatic but
secure way, various types of advanced encryption constructions can be used,
e.g., searchable encryption for protected search and homomorphic encryption
for aggregate operations. Many schemes enable querying on encrypted data
with different protection levels and various functionalities. There is a trade-off
between security, query expressiveness, and performance. On the one hand,
understanding and robust implementation of such cryptographic schemes is a
complex task for enterprise software developers; on the other hand, modern
distributed software architecture, such as microservices, makes it challenging
for security experts to plug in their security policies and mechanisms, especially
in the case of advanced cryptographic schemes.

DataBlinder addressed this issue by allowing software developers to annotate
the sensitive fields inside the database schemas. These annotations express the
required protection level and the query functionalities. To offer a notion of
crypto agility in this scope, the middleware, based on the security policies and
existing protection tactics, selects and initialises the right tactic for each field.
DataBlinder manages these annotations at a per-field granularity. Each field
belongs to a collection that can be a part of a separate database. Therefore,
the complexity of these cryptographic constructions is abstracted away, and
consequently, clients perform data operations as they used to do on plain-text
data. To provide an extensible architecture, the DataBlinder tactic selection
subsystem is structured using the service provider interface (SPI) pattern.
Protection tactics can be extended by implementing the operation interfaces.
Based on the commonality between most tactics, a certain set of parameters are
injected in the implementations, e.g., key-value database and key management
adapters. The middleware executes the tactics’ security logic at runtime in a
distributed fashion.

Theoretically, moving computation closer to data should result in faster response
time. Therefore, we implemented the homomorphic addition of Paillier [159]
PHE as user-defined functions (UDF) within the MongoDB and Cassandra
databases. In the Cassandra case, our performance evaluations showed that UDF
executes in total ~50% faster than the function deployed within a VM next to
the database. However, MongoDB, due to its underpinning architecture and the
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UDF programming language (JavaScript), could only handle the computation of
up to almost 40k documents. Besides, it was considerably slower than Cassandra.
We conclude that the database and security community need to rethink the
architecture of the existing database systems to support seamless extensions
towards privacy-preserving techniques. More concretely, next-generation cloud
databases can potentially support various programming runtimes and enable
their clients to provide more sophisticated programming logic for their functions.
Moreover, the architecture should provide an appropriate source of randomness
for the algorithms, decent isolation in terms of performance and security, and
flexible dependency management for importing external libraries. Lastly, the
execution and distribution of these functions should not be limited to single-node
clusters.

To support distributed execution of the tactics in a service-oriented architecture
(e.g., microservices), the middleware is prototyped as a gateway and a cloud
service. Several searchable encryption schemes with various protection levels
and a partially homomorphic encryption scheme have been integrated into the
middleware. Our validations and performance evaluations with FHIR-compliant
medical data [95] showed that DataBlinder offers this flexibility at the cost of
1.4% overall throughput loss in comparison to a scenario where the tactics are
inflexibly integrated into an application without considering the middleware
and crypto agility.

Reusability of the approaches. Our contributions are not limited and tailor-
made to a single application. This means that we did not leverage generic
designs towards specific system requirements. More concretely:

• The techniques used to mitigate the cold start problem are generic and not
tied to a very specific software architecture. Employing library sharing,
reusable network containers, and imperative configuration management
are generic approaches that can be reused for most container-based
deployments in the Kubernetes environment. However, we only tested
these approaches using event-driven software, in particular job-processing
applications. The event-driven software architecture (or deployment
model) has been widely used in modern cloud-native applications including
those crafted for serverless computing.

• The InfraComposer middleware focuses on engineering workflows. Using
the deployment annotations, the generic architecture of the middleware,
and the TOSCA [195] deployment specification, the entire cloudification
system works for many workflows with similar execution and deployment
flows. The middleware reuses pre-built assets and re-configures the
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components of existing deployment plans in an adaptive architecture
towards efficient executions. We validated this architecture with two
real-world engineering workflows from the aeronautics sector.

• The DataBlinder architecture is based on studying two classes of protection
tacts, namely searchable encryption, and homomorphic encryption.
We outlined the commonality between these tactics and presented
generic abstractions accordingly. Moreover, the data-access application
programming interface (API), provided to software developers, is based
on well-known operations found in most document-oriented and key-value
databases. This ensures the validity and reusability of the APIs. We
presented a generic abstraction model enabling software developers to
annotate database schemas by defining protection level and the required
operation. We validated this architecture with a widely-used specification
for exchanging healthcare information electronically, known as FHIR [95].

5.2 Limitations and future directions
“What got you here won’t get you there.”

– Marshall Goldsmith

This dissertation has presented several contributions in the scope of outsourcing
computation and data to the cloud. The high-level key research problem
of outsourcing such applications to the cloud concerns efficiency and cost-
effectiveness in the scope of infrastructure outsourcing, and pragmatic data
security in the scope of data outsourcing. This section discusses the current and
future directions towards (i) efficient and secure agility of computing instances,
where we present an overview of the current and future research directions in
the direction of mitigating the cold-start problem, and (ii) cryptographic agility
and end-to-end encryption at scale, where we present our views towards the
impact of cryptographic agility on software service providers.

5.2.1 Efficient and secure agility of computing instances

Chapter 3 presented a policy-driven middleware which enables engineering
workflows to run in the cloud. The key goal was to optimise the deployment
plans such that the overall execution becomes more efficient and faster. Our
approach relies on the agility of the underlying cloud resources such as virtual
machines. Modern software systems move towards decomposing monolithic
applications into smaller services, known as micro-services. This decomposition
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is driven by various operational and managerial reasons, such as fine-grained
scalability. Since OS-level virtualisation is the most common way to package
and virtualise services in a lightweight fashion, we therefore in Chapter 2
present three techniques to alleviate the cold-start latency in the scope of
the Kubernetes container orchestration framework. With the introduction of
serverless computing, in particular Function as a Service (FaaS), the industry
and research community have been looking into further decomposing the services
into functions. The long-term research idea is to introduce new abstractions for
existing and future cloud computing services [161], and ideally move towards a
programmable cloud [50, 175]. That means software developers would become
less involved in operational matters. To achieve this ideal-world goal, the agility
of the cloud resources is of the utmost importance. The ability to launch and
manage these resources as quickly as possible is a key requirement.

In this subsection, we provide an overview of the ongoing research directions in
this domain, and we conclude the discussion with a few remarks on the open
security questions.

Moving towards serverless computing. The deployment and execution model
of cloud-based software have evolved from traditional virtualisation in the
Infrastructure-as-a-Service (IaaS) model to more recent models including
serverless computing, also called FaaS. A large number of software service
providers, and cloud customers in general, are concerned with the complexity
of maintenance, the high degree of resource configurability, and the non-trivial
settings for efficient auto-scaling of their software components [177]. Chapter 3
showed that this is not a trivial task. Furthermore, these companies are inclined
to focus on their core business rather than managing their low-level deployments.
The Berkeley view on serverless computing [107] argues that, in the traditional
cloud infrastructure, software developers are most of the time responsible for
managing the virtual machines as system administrators. In addition, on the
financial side, a subset of their cloud resources often remain under-utilised based
on certain workloads, even with the presence of auto-scaling systems. Therefore,
serverless computing is potentially a lucrative execution and deployment model
for many businesses.

Serverless computing is an oxymoron [107] in the sense that cloud functions
are still using servers under the hood. However, from the cloud customers’
perspective, the computing infrastructure is transparent and delegated to the
cloud provider [177]. Therefore, the cloud provider is responsible for the
deployments, containers, auto-scaling, and all the other operational tasks.
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The cold start open problem. Serverless FaaS applications are composed of
sequences of cloud functions. In an ideal world, when a function is invoked,
clients expect the same response time as the function would have been natively
compiled and run on their local workstations. However, in a real-world serverless
setting, when a function is invoked, the following steps are executed: a computing
node is selected and the relevant container image is fetched; a container is
bootstrapped and started; the programming language runtime is launched; the
customer function is loaded and initialised; and then the function is ready to
handle the user request. Researchers and practitioners have been conducting
research to mitigate and minimise the cold start latency to achieve the ideal-
world sub-millisecond latency. This dissertation argues that cold start is an
important and unsolved problem in the scope of infrastructure agility, meaning
that serverless computing platforms yet strive for a generic solution.

Research scopes for cold start mitigation and state of the art. We present
the state-of-the-art approaches that directly or indirectly alleviate the cold start
problem. These research directions are listed in this section since these are still
actively being researched and open for innovation. As illustrated in Fig. 5.1,
the research scope is summarised into four focus points.
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Figure 5.1: The four-layer and full-stack research scope to introduce and optimise
computing systems towards mitigating the cold start problem.

1. Virtualisation, operating systems, and computing instance. In this layer, the
research focus is on improving the low-level computing infrastructure. This layer
has been a very active research scope within the systems community, which
results in the following areas:
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• Light-weight operating systems. Starting from Microkernels [79] several
decades ago, a branch of Linux kernel design is moving towards reducing
the kernel modules to a bare minimum, i.e. a minimal stack of libraries
enough to bootstrap the OS and run the applications. The ongoing research
efforts include Unikernel [130], MicroVMs [3], and more. For example,
Unikernel allows developers to compose and compile a minimal set of
libraries and their applications to create sealed and fixed-purpose images.
These images can run directly on a hypervisor. Next to their potential
benefits such as improved security, small footprints, maximizing hardware
utilisation, this line of Linux kernels is relatively faster to boot up.

• Optimising containers. This approach aims to optimise the kernel and
container runtimes towards faster containers. Oakes et al. [151] present a
task provisioning system that includes the optimisation of containers. They
replace the flexible and costly mechanisms with simpler alternatives in the
scope of disk, network, and user namespaces. Moreover, they provision
new runtimes by forking from the Zygote processes instead of creating
new ones from scratch. That would eliminate the interpreter and package
initialisation cost.

2. Resource orchestration and scheduling. In this layer, the orchestration
framework, including the schedulers and auto-scalers, are the focus point for
further research to improve the agility of cloud functions. The three categories
of approaches include:

• Resource pooling. This approach aims to reuse computing resources to
improve the cold-start latency. There exist various pools, including: (i)
the pool of warm containers in which containers are ready to serve the
clients’ requests, (ii) the pool of containers where pre-warmed containers
are started but the application is not yet initialised, and (iii) the pool of
network containers in which the network infrastructure of the application
containers is pre-created. The plain usage of these techniques results in
a large memory footprint. Therefore, the research challenge is to find a
reasonable and cost-effective tradeoff between sub-second startup time
versus resource underutilisation. The notion of pool or queue is presented
in several works [180, 145, 137, 123, 182, 18, 179]. For example, to reduce
the excessive resource consumption of the unused resources in the pools,
some work [179, 182] proactively spawn containers in the pool based on
the execution flow of the cloud functions or the workload pattern.

• Snapshotting and caching. This line of approaches aims to present cache-
aware schedulers to start cloud functions on the compute nodes in which
relevant resources are already available. The cached resources include
container images or even snapshots of a cloud function. A recent work
by Silva et al. [180] employ the checkpoint-recovery technique to create
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snapshots of containers at certain points in time. Cloud function snapshots,
e.g. made by the tool CRIU [124], are Linux processes snapshots since
containers are just processes from the host operating systems perspective.
That means restoring a snapshot is considerably fast; therefore, the outcome
leads to the improved startup time of the functions. Section 2.3 presents
further related research in this scope.

• Execution-flow based. In FaaS, applications are composed of collections
of cloud functions. The control flow of the applications typically includes
various subsets of these functions for different aspects of the business
logic. Therefore, at runtime, we have various execution flows. Several
work [182, 57] present new techniques to provision the cloud functions
involved in the execution flows to alleviate the cold start problem. For
example, Daw et al. [57] target the cascading cold-start problem in an
execution path. They present an approach to detect the most likely
execution path and speculatively deploy the containers.

3. Programming languages runtime. When a container is launched, to execute
an application, the language runtime is required to be launched and initialised.
Recent research shows that some popular language runtimes such as Java,
Python, or JavaScript can be very slow [151, 18] to bootstrap. For instance,
Java Virtual Machine (JVM) enables Java to be platform-independent by
compiling byte-codes to machine code at runtime; this process is known as
just-in-time (JIT) compilation. Although this approach presents adaptively
further optimisations at runtime, the startup time is slow. Ahead-of-time
(AOT) compilation would eliminate the JVM layer consuming around 300 MB
of memory [142]. Memory is very costly in the current commercial FaaS
offerings [142]. Therefore, by using AOT compilation, higher-level programming
languages such as Java can be compiled to native machine code. As a result,
the startup time of such applications can become considerably faster. One of
the major efforts in this scope is GraalVM [158].

4. Application-specific initialisation. Optimising the infrastructure stack
towards faster startup time mostly results in constant time improvements.
This includes improving the hardware, operating systems, virtualisation,
orchestrators, and execution runtimes. However, the bootstrapping time of
cloud functions is shown to be application specific [179]. In the initialisation
phase, functions can be blocked by calling different resources such as other
functions, and databases. An application might require a time-consuming
machine-learning model initialisation at startup time. We highlight, among
others, two research directions in this domain:

• Library sharing. Oftentimes, depending on the workload, it is required
to spawn several instances of an application container. As result, a large
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portion of the software dependencies such as libraries is redundantly loaded
in memory. Consequently, this potentially causes high and unnecessary
memory consumption as well as a slower startup time. The research goal
is to share software dependencies between identical containers. Recent
work [73, 18] improves the cold-start problem by taking this goal into
consideration.

• Workload based. Recent research published by Microsoft Research [179]
reports that application workloads are considerably diverse due to
the heterogeneity of applications and varying request arrivals; their
observations are based on the entire production FaaS workload of Azure
Functions. For instance, popular applications consume more memory;
therefore, having warm pools of functions at scale is not always an option.
Azure has a 20min keep-alive time policy for the functions. A function with
a periodic request arrival of every 21min would suffer from the cold-start
latency upon each request. Interestingly, more than 75% of functions
execute up to a maximum of 10 seconds, which is roughly equal to the
cold-start duration on average. The authors create histograms based on
the frequency of the invocations per application, and they pre-warm the
resources just in time as well as adjusting the keep-alive time adaptively.
For the workloads that cannot be captured by the histograms, their system
employs time-series analysis to proactively pre-warm the containers. This
cold-start mitigation approach is realistic and promising for further research;
however, it requires the workloads to be publicly available to the research
community. Fortunately, Microsoft has made a sanitised portion of the
workload traces available to the public [170].

Further research on composable and hybrid techniques. There are many
approaches to mitigate and alleviate the cold-start latency. Although each of
these approaches is a subject of ongoing research, it is shown that applications
themselves, and their workload [170] are of the utmost importance. The research
community should further investigate the possibility of hybrid techniques. For
example, by looking into the workload traces of a specific application, a FaaS
provider can speculatively spawn warm pools of resources. This line of research
requires the industry to collaborate with academia. For instance, Microsoft
has published a portion of Azure Functions workload traces to the public [170].
In the long term, it would be interesting to look into advanced middleware
frameworks to infer the properties and characteristics of FaaS applications and
compose the right approaches for the task at hand.

Concluding remarks on security. As presented above, the community has been
conducting research on the cold-start problem at all layers. However, the security
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threats are not always considered and are classically left as an afterthought.
For example, the snapshot family of approaches uses the checkpoint-recovery
technique to make a snapshot of a warm container process, and restore it at the
time of need. If this is not done correctly, it might become a recipe for security
complications [139]. For instance, in the snapshotting approach, the following
questions are crucial to be answered:

• Snapshots typically preserve the memory address structure. If the memory
address space layout randomisation (ASLR) is intended to be used, What
is the strategy if we restore containers from the snapshots?

• Based on the security best practices, containers should hold no application
secrets; however, how do we guarantee that the snapshots, taken at a
certain point in time, contain no secret key in memory?

• Linux random number generators rely on entropy pools. Do snapshots
bring along the same entropy pools?

The Linux-based OS-level virtualisation, e.g. Docker containers, are considered
to be about abstraction rather than the traditional isolation that we are
familiar with in the scope of virtual machines. Most Linux containers use
cgroups to limit the memory and CPU usage, and kernel namespaces to
isolate the operating environment such as process trees, network, and more.
However, the OS-level virtualisation relies on a shared kernel. Therefore, security
assurance is typically based on the security ecosystem but not on isolation. The
cloud practitioners, e.g. Netflix [199], typically achieve security through cloud-
based offerings and application-level security techniques, such as IAM, access
control sidecars, network security groups, securing the container orchestration
frameworks, mutual TLS between nodes, and more.

Hardening the host machines and the containers is of the utmost importance
because a kernel vulnerability might put everything at risk (e.g. CVE-2016-
5195 [150]). In that regard, recent research towards light-weight operating
systems such as Unikernels [130], MicroVMs [3], Kata Containers [55], Nabla
Containers [203], and more, presents new approaches to either reduce the attack
surface by eliminating the unnecessary kernel modules or providing VM-grade
isolation by running dedicated kernels. This is an ongoing research direction to
find lightweight and at the same time secure alternatives to the classic VMs
and containers.

Next to the aforementioned research challenges, large-scale service providers, e.g.
Netflix [199], also including cloud providers, require vulnerability management
processes. The major task is to continuously scan the assets and services for the
known vulnerabilities, and consequently take an action against the stale assets.
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In our scope, assets can be container instances, images, snapshots, caches, and
more. These assets might either be present in the asset registries, in the warm
pools or even cached in the nodes. Therefore, further applied research is required
to present new mechanisms to securely flush out the vulnerable components
in the development and production settings. This might seem trivial; however,
a large-scale service provider with thousands of assets would eventually suffer
if we optimise our infrastructure towards low-latency startups without paying
attention to security. For instance, if a complex library-sharing approach is
in place, and hundreds of production containers are in operation using this
system, what would be the most secure and cost-effective approach to gracefully
upgrade a vulnerable library?

The community should take a step back and revisit the existing techniques
with regards to security implications, as well as including security analysis as a
requirement for future techniques.

5.2.2 Cryptographic agility and end-to-end encryption at scale

In Chapter 4, the DataBlinder architecture aimed to bring software developers
and security experts closer to each other by introducing policy-driven
abstractions for data protection techniques. In this subsection, we present
how software systems that lack cryptographically agile software architecture
are affected by necessary cryptographic upgrades. In particular, we discuss how
applications are affected, and the potential impact on SLA-driven applications.
We further present the importance of observability and discoverability of
cryptographic assets as well as cryptographic agility for confidential computing.
Moreover, we discuss various views regarding cryptographic agility, and we
present our views on the subject, especially regarding DataBlinder. We conclude
this section by presenting the requirement for the protection of primary keys
and data replication for highly scalable databases.

The potential impact of cryptographic agility on software systems. RFC-
7696 [98] defines cryptographic agility as the easy migration from an algorithm
suite to another one over time. Such a migration is often motivated by advances
in crypto-analytic attacks and computing capabilities. The migration is not as
simple and smooth as it might seem. For instance, it has been shown that any
change in the following parameters have caused the companies and the software
communities tremendous efforts:

• Different output lengths. Oftentimes the output length of cryptographic
functions changes depending on the underpinning constructions. For
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example, the MD5 hash function outputs 128 bits and it is completely
broken today [198]. The SHA-2 family of hash functions, as a replacement,
has the output size of 224 and 256 bits in the shortest form [89]. The
way the output is processed in the entire software stack, and the way it is
persisted in memory and databases are subject to cascading difficulties
across all layers. Therefore, such software systems are considerably hard
to be refactored.

• Different key lengths. Depending on the type of cipher suite as well as the
security strength, the key length varies and potentially causes engineering
and operational challenges. For example, software systems tailored with
512-bit or even 1024-bit RSA are not considered secure anymore. Today, the
National Institute of Standards and Technology (NIST) recommends [12]
2048-bit RSA keys that have a security equivalence to 112-bit symmetric
keys, and 15360-bit length equal to 256-bit symmetric keys. Upgrading
key size in many software systems and networked assets is not a trivial
task because of many reasons such as the lack of configurability.

• New input parameters. The type and number of input parameters are
subject to change. For example, the adoption of elliptic-curve cryptography
has changed many aspects of the cryptographic primitives including input
parameters due to its relatively different underlying mathematical context.
In a rigid architecture, such a change affects some parts of the software
systems, or even other external software artifacts consuming the interfaces.
Therefore, the change impact, also known as ripple effect in software
engineering, might potentially get beyond an application context.

The notion of cryptographic performance and service layer agreements
(SLA). A cryptographic interface can change in several dimensions: function
names, input-output lengths, input-output parameters, and naturally the
computational complexity. Software service providers often agree upon
certain service-level objectives (SLO) with their customers (e.g. the service
throughput). Therefore, changing a cryptographic construction by using a
different underpinning mathematical building block or even a larger key length
often affects the entire stack. For instance, the performance of the public-key
cipher-suites varies depending on the mathematical hardness assumption such
as the integer factorisation, discrete logarithm, or the lattice-based problems.
At the higher layers of the software stack, this often can potentially be observed
as extra latency and degraded throughput. Conversely, the cryptographic
primitives might become more efficient and lightweight; an example can be the
transition from the RSA family of schemes to ecliptic-curve crypto-systems. As a
result, the computing resources might become under-utilised and over-allocated
for the task at hand. This issue might seem trivial and unimportant; however,
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capacity planning and resource allocation are financially crucial for large-scale
service providers. Consequently, cryptographic agility requires further applied
research towards smarter performance engineering by optimising the existing
hardware to maximise the CPU cycles, concurrency, and lastly the autoscaling
systems.

Observability and discoverability of cryptographic assets. Cryptographic
assets such as key pairs and certificates, if not managed in a centralised fashion,
might potentially cause difficulties in the process of upgrading the protocols. For
instance, recently ABN AMRO Bank reported [191] that it took the organisation
almost more than a year to discover and replace their obsolete certificates. The
bank produces thousands of certificates for their customers, employees, internal
and external software. This process was motivated by the deprecation of SHA-1.
This problem can also potentially occur in large-scale software systems built
using microservice architecture. There is an open direction for applied research
in the scope of observability of security assets across thousands of services. It
would be interesting to know how those assets can be identified, tracked, and
upgraded at the time of need, and that should happen in a graceful manner
without service outage.

Cryptographic agility for confidential computing. Cryptographic changes
in software-only solutions are intuitively manageable. With the presence
of flexible software architecture, changes can be done more swiftly in
comparison to the hardware-software security solutions. In the modern and
new generation of hardware architecture, various hardware-based components
assist operating systems, hypervisors, and software systems to be secure in
untrusted environments. Examples can be secure cryptoprocessors such as
trusted platform modules (TPM), hardware security modules (HSM), physical
unclonable functions (PUF), trusted execution environments (TEE), or even
the AES-NI instruction set. Major corporations have already integrated these
hardware-software technologies in their offerings, such as the extensive usage
of TPM in the IBM Power9 processor chips to support secure VMs [99], or
Microsoft Azure that uses TEEs to offer confidential computing [172] to their
cloud customers. The cryptographic agility landscape of the next-generation
software, built on top of these technologies, is not clear. More applied research
is required to understand the impact and the strategic action points in response
to vulnerabilities or critical incidents. This is important since the semiconductor
industry typically has a slower pace in patching or replacing the vulnerable
components in comparison to the software industry.
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Cryptographic agility, the divided community, and our views. A part of the
security community does not consider cryptographic agility to be a right and
safe approach to design cryptographic protocols. The first argument stems
from the idea that cryptographic primitives are not the root cause of the
security vulnerabilities in real-world systems; in fact, the way these primitives
are combined to form larger protocols are often the reason for the security
breaches [9]. The second argument is about the fact that software developers
often make mistakes in the implementation of the protocols due to the complexity
of cryptographic configurations. And, if architecture is flexible to allow software
developers to switch cipher suites themselves, it is considered to be rather
harmful, especially the types of crypto agility solutions that work at runtime
through protocol negotiations. As an example, in the past, an attacker could
negotiate the use of a lower version of TLS in OpenSSL allowing attackers to
mount downgrade attacks [7]. Therefore, they recommend that cryptographic
algorithms should be baked in the software modules along with version numbers.
Therefore, the algorithms should be swapped under the hood with new version
numbers. Our views with regards to these arguments are as follows:

• It is correct that the combination of cryptographic primitives can
potentially leak unwanted information; however, it is incorrect to neglect
the security of the primitives themselves. There have been several points
in time that the industry had to upgrade the existing schemes to secure
alternatives, such as DES, 3DES, MD5, SHA1, and so forth. For instance,
many companies including banks [191] have already started looking into
their software and infrastructure architecture for post-quantum schemes.

• These arguments primarily focus on runtime negotiations and protocol
updates; however, the actual focus of cryptographic agility is beyond
the runtime state. In fact, a large part of such upgrades happens at
the deployment time since software projects often require considerable
changes. For the algorithm-transition mechanisms based on negotiation-
based approaches, their concern is valid [9]; therefore, extra care is required
to be taken into consideration because of the risks of downgrade attacks.

• Research results [117] present that 83% of the bugs are in applications
that misuse cryptographic libraries. However, this does not justify that
cryptographic schemes, artifacts, and configurations should be tailored to
the architecture of an application in a rigid manner. Having a correct level
of abstraction is crucial. Libraries such as Libsodium [121] or NaCl [19]
aim at offering cryptographic functions to the developers with usability
and simplicity in mind. Yet, the advances in program verification open
up new research avenues to eventually meet stronger security guarantees
outside of the scope of the cryptographic libraries too.
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Cryptographic agility, DataBlinder, and open directions. DataBlinder,
presented in Chapter 4, aims to bring software developers and security experts
closer, and yet abstracting away the cryptographic complexities. We present
an abstraction model for data operations towards usability and simplicity of
defining required protection levels. Developers only require to define their
required operation and protection level, and the middleware handles the right
tactic selection at runtime. Tactic selection at runtime might imply the agility
of the cryptographic constructions; however, this aspect does not entail tactic
upgrade at runtime. Tactic upgrade at runtime means replacing a tactic that is
already serving the clients to a new version or a completely new tactic. This is
one of the key requirements of cryptographic agility, and it is potentially an
open direction for further systems research.

Although DataBlinder, in the current version, does not consider migration,
it lays out the software architecture in a way in line with cryptographic
agility of such systems: (i) the abstraction models simplify the API’s; (ii)
the extensible architecture enables future tactics to be integrated with less
impact on the middleware codebase; and (iii) by using the gateway pattern
and the data-access abstractions, the current deployment model decouples the
cryptographic constructions from the rest of the microservice deployment. As a
result, the latter reduces the ripple effect in case of any change in the algorithms.
Lastly, cryptographic configurability of software is an important aspect of crypto
agility [98, 47]. In this regard, DataBlinder enables security experts to control
the tactic selection mechanisms through a policy-driven approach.

Breach-resistant primary key and replication protection for highly scalable
databases. Chapter 4 and the CryptDICE [168] middleware present a solution
to allow developers to seamlessly outsource sensitive data to the cloud in a
protected way; however, the protection of primary keys is not fully investigated.
In SQL and NoSQL databases, primary keys are used for the identification
and the lookup process of the documents. More importantly, these values are
the basis for correlations between different collections of documents, known
as foreign keys in the relational database systems. Modern highly scalable
database systems leverage primary keys and employ partitioning techniques
such as consistent hashing [190, 206] to distribute data evenly across a large-
scale cluster of database nodes. Moreover, the partitioning algorithms facilitate
the process of data replication across the nodes and data centers. The recent
Facebook data breach [96] has shown the importance of protecting such data
against passive, or snapshot adversaries. The current state of the art have looked
into protecting foreign keys [166, 85, 88, 143, 178, 111] and distributed hash
tables (DHT) [4, 207]. However, we have not yet seen any industry adoption
and extensive research by the systems community to understand how real-world
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systems are affected by these techniques. Furthermore, not much attention has
been paid to data replication based on primary keys. Therefore, to protect data
in highly scalable systems, further research should be done towards the next
generation of secure partitioning and replication strategies.
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