
Leveraging Kubernetes for adaptive and cost-e�cient resource
management

Stef Verreydt, Emad Heydari Beni, Eddy Truyen, Bert Lagaisse, Wouter Joosen
imec-DistriNet, KU Leuven, Belgium
firstname.lastname@cs.kuleuven.be

Abstract
Software providers face the challenge of minimizing the amount of
resources used while still meeting their customer’s requirements.
Several frameworks to manage resources and applications in a dis-
tributed environment are available, but their development is still
ongoing and the state of the art is rapidly evolving, making it a
challenge to use such frameworks and their features e�ectively
in practice. The goal of this paper is to research how applications
can be enhanced with adaptive performance management by re-
lying on the capabilities of Kubernetes, a popular framework for
container orchestration. In particular, horizontal as well as vertical
scaling concepts of Kubernetes may prove useful to support adap-
tive resource allocation. Moreover, concepts for oversubscription
as a way to simulate vertical scaling without having to reschedule
applications, will be evaluated. Through a series of experiments
involving multiple applications and workloads, the e�ects of dif-
ferent con�gurations and combinations of horizontal and vertical
scaling in Kubernetes are explored. Both the resource utilization of
the nodes and the applications’ performance are taken into account.
In summary, providing suitable resource con�gurations increases
cost-e�ciency without any major downsides. The e�ects of using
the default Kubernetes horizontal autoscaler, however, depend on
the type of application and the user workload at hand.

Keywords Auto-scaling, Adaptive resource management, Con-
tainer orchestration frameworks

1 Introduction
Companies tend to move their resources to the cloud rather than
keeping them on their own infrastructure as it o�ers numerous
advantages (i.e. [1]). SaaS providers aim to provide their services as
cost-e�ciently as possible. In this regard, they face the continuous
challenge of utilizing only a minimal amount of resources while
still meeting their customers’ requirements. One way to reduce the
amount of resources needed is by locating multiple applications on
the same node. This entails new challenges, e.g., determining how to
divide over-provisioned resources among the deployed applications,
and how to handle resource contention in general.

Kubernetes is a popular open source framework for managing
containerized applications in a distributed environment, providing
basic mechanisms for deployment, maintenance and scaling of
applications [7]. It also o�ers several useful features for resource
management. A pod in Kubernetes is the smallest deployable unit
of computing which can be created and managed [8]. Containers
belonging to the same application are grouped together in pods.
The resources used by a pod can be limited, e.g., by setting its so-
called requests and limits. The request is the amount of resources
which it is guaranteed to get; the limit is the maximal amount of
resources it can obtain [10]. When there is resource contention in
a node, the resources are divided among the pods according to the

relative weight of their requests. This mechanism is re�ered to as
cpu-shares. Another way of adjusting the resources available to an
application is to scale it. Kubernetes o�ers default horizontal and
vertical autoscalers, called the Horizontal Pod Autoscaler (HPA) and
Vertical Pod Autoscaler (VPA) respectively. However, a well-known
disadvantage of the VPA is that it currently requires to reschedule
Pods when dynamically adjusting requests or limits [6].

Kubernetes is evolving rapidly. Meanwhile, both documenta-
tion and research are struggling to keep up with its development,
especially since most research is aimed towards custom scaling
techniques (e.g., [18] [4]). As a result, identifying the optimal way
to manage resources in Kubernetes can be a di�cult task. Multiple
questions may arise when con�guring a Kubernetes cluster, e.g.,
how to choose suitable requests and limits, on which nodes to lo-
cate certain pods and how to con�gure an autoscaler. The goal of
this paper is therefore to research how di�erent Kubernetes fea-
tures can be leveraged to cost-e�ectively manage resources in the
framework while also meeting SLOs in the presence of dynamically
evolving workloads. More concretely, we aim to provide answers
to the following questions:

• What is the impact of di�erent request and limit con�gura-
tions?

• Does co-locating a high priority pod with a low priority pod
a�ect the performance of the high priority pod?

• What is the performance impact of scaling an application
using the HPA?

Di�erent con�gurations may result in di�erent performance
gains (or losses) depending on the environment. For example, the
user load may be very bursty, in which case using the oversub-
scription concepts or the HPA may not always lead to the expected
results. Hence, the aforementioned impacts of the di�erent mecha-
nisms will be tested for both linearly increasing and bursty work-
loads. In this paper, however, only CPU intensive workloads will
be examined.

The remainder of the paper is structured as follows. §2 discusses
related work on resource management in cloud environments. §3
provides an overview of the test environment. In §4, the experi-
ments and their results are presented. §5 concludes this paper.

2 Related work
Caravel [4] is a scheduler which co-schedules stateful and stateless
applications in containerized environments. Stateful applications
require more care to schedule when compared to stateless appli-
cations, as each replica of a stateful application is unique and the
order of scheduling matters. When scaling out, stateless applica-
tions can scale instantly by spawning an identical copy. Scaling
stateful applications requires more planning and is thus also slower
in most cases. This makes vertical scaling the preferred method of
scaling for stateful applications during a load peak, as no new repli-
cas need to be scheduled. Vertically scaling stateful applications

1



Middleware ’19, December 09–13, 2019, UC Davis, CA, USA S. Verreydt et al.

entails its own risks, however. In container orchestration frame-
works, applications using more than their requested amount of
resources risk being evicted. In turn, a second problem called burst
propagation arises: eviction of one replica results in the load being
redirected to another replica. Now this replica’s resource usage
increases. It will in turn be prone to eviction, and so on. Another
option for container orchestration frameworks is to throttle the
resources of a container instead of evicting it, but this will cause a
drop in performance during load peaks [4].

Caravel addresses these concerns by letting stateful containers
evict stateless containers as these can be restarted in only a few
seconds on another node. By doing so, it tolerates bursty behavior
of stateful applications and reduces their evictions. Furthermore,
Caravel imposes several mechanisms to control excessive evictions
of stateless applications. In this paper, we explore how similar
behavior could be achieved by only using Kubernetes mechanisms.
However, the distinction is not made between stateful and stateless
applications but rather between high and low priority applications.

Wong et al. [18] describes the (dis)advantages of vertical and
horizontal scaling and proposes a hybrid solution, developed on top
of Docker engine without any container orchestration framework.
Wong compares their scaling solution to the standard autoscalers
in Kubernetes. A �rst disadvantage of Kubernetes noted by Wong
is that its default scaling solutions only consider one resource when
making scaling decisions. Second, Wong explains how the Kuber-
netes autoscalers often lead to sub-optimal con�gurations. Wong’s
algorithm di�ers from the default Kubernetes HPA in two ways: the
use of vertical scaling and the consideration of multiple metrics to
make scale decisions. A complete discussion of the algorithm does
not fall within the scope of this paper. Wong’s experimental results
show that HyScale outperforms Kubernetes for bursty workloads.
For non-bursty workloads, their performance is similar [18].

When comparing horizontal and vertical scaling for CPU inten-
sive workloads, Wong describes that Docker’s CPU shares mecha-
nism can be used to “induce a form of vertical scaling, as increasing
or decreasing shares directly correlate with an increase or decrease
in CPU resource allocation to a container” [18]. When comparing
their solution to Kubernetes, however, they only consider the Ku-
bernetes HPA, without mentioning these CPU shares. This paper
evaluates the e�ects of combining the HPA with the CPU shares
mechanism in Kubernetes.

3 Test Environment
This section describes the speci�c tools used in the experiments
and a brief overview of the three test applications.

Kubernetes cluster. All the experiments are run on a Kubernetes
cluster deployed on the DistriNet private cloud, which is based on
the OpenStask platform [9]. Four virtual machines are deployed:
one master and three worker nodes. The cluster itself is created
using kubeadm [5]. All of the machines are running the Ubuntu
16.04 operating system. Three of the nodes, including the master
node, are allocated 2 CPUs and 4 GB of memory. The last node is
assigned 4 CPUs and 8 GB of memory. The three worker nodes
are placed on the same OpenStack computing node to minimize
latencies between applications running on the nodes. On the �rst
worker node, which is the node with 4 CPUs and 8GB of mem-
ory, an experiment controller is deployed. The second and third

Master

Worker	2

- High priority app

- Low priority app

Worker	3Worker	1
- Experiment controller

- Heapster

- InfluxDB

- Grafana

- High priority app replica

Computing node

Figure 1. Test cluster setup

worker nodes are reserved for the applications to be deployed on.
An overview of the setup is shown in Figure 1.

Experimentation tools. To monitor the resources in the cluster, a
combination of Heapster [13], In�uxDB [11] and Grafana [16] is em-
ployed. To run and monitor the experiments, K8-Scalar [3] is used.
K8-Scalar is an extensible workbench exemplar for implementing
and evaluating di�erent self-adaptive approaches to autoscaling
container-orchestrated services [2].

3.1 Deployed applications
Cassandra based application. A Cassandra based application
is selected as the �rst high priority test application. Only write
operations are examined in this paper, as they are CPU intensive.
The main QoS requirement for the application is thus the latency
of write requests. Cassandra is well-suited for the experiments as
its design is optimized for write-heavy workloads [3].

Arti�cial SaaS application. An arti�cial SaaS application devel-
oped at KU Leuven [12] is selected as a second high priority test
application. The main bene�t of this SaaS application is that the
stressed resource is easily con�gurable through the application’s
REST interface. For example, if a CPU intensive workload needs
to be tested, the memory intensity of the application can be set to
zero by executing a simple REST command at runtime.

Low priority application. The low priority application used for
testing the e�ects of co-locating pods executes a multiplication in
an in�nite loop. If su�cient resources are free, it continually uses a
full CPU since it is single threaded. The exact CPU usage is known
and roughly constant.

4 Results
In this section, the Kubernetes mechanisms for resource manage-
ment are evaluated through a series of experiments.

4.1 Experiment 1: Determining the e�ects of request and
limit con�gurations

If there is just one pod scheduled on a node, and if that pod has no
limits set, then it should be able to use all of the nodes resources.
This experiment tests this hypothesis using a Cassandra application.

Setup. First, the expected performance of the Cassandra applica-
tion is described in an SLO as follows:

SLO. 95% of the requests sent to the Cassandra application must be
handled within 150ms, as measured by the experiment controller.

The Cassandra application is deployed on the second worker
node with a CPU and memory request of respectively 1500m and
2GiB. No limits are set. In this experiment, the experiment controller

2



Leveraging Kubernetes for adaptive and cost-e�icient resource management Middleware ’19, December 09–13, 2019, UC Davis, CA, USA

Figure 2. 95th percentile latencies during Experiment 1 and 2.

Figure 3. Secondworker node CPU usage during Experiment 1. The
CPU usage of Cassandra rises above its CPU request, illustrating
that the application can use all of the overprovisioned resources.

sends an increasing amount of requests to the Cassandra applica-
tion, starting at 100 requests per second up to 600 requests per
second, increasing with 50 requests per second every 600 seconds.

Results. Figure 2 shows the 95th percentile latencies of the re-
quests, as reported by the experiment controller. At around 400
requests per second, the SLO is violated. Figure 3 shows the CPU
usage of Cassandra and the second worker node. It illustrates that
at around the same amount of requests per second, the node uses
all of its available CPU, as 2.0K millicores equals 2 CPUs. This vali-
dates that the bottleneck is indeed the CPU. Furthermore, Figure
3 shows that the Cassandra application is able to use almost all of
the overprovisioned resources. This in in line with expectations,
as the resources on the node are only contended by the Cassandra
application.

4.2 Experiment 2: Determining the e�ects of co-locating a
high and low priority application

The goal of this experiment is to answer whether it is possible to
increase cost-e�ciency by using the Kubernetes oversubscription
mechanisms described in §1. Through two tests, we illustrate the
e�ects of di�erent request con�gurations when a high and low
priority pod are co-located on a node.

Setup. The low priority application described in §3.1 is added to
the second worker node. The experiment consists of two separate
tests. During the �rst one, Cassandra and the low priority pod each
have a CPU request of 500m. For the second test, Cassandra has
a CPU request of 1500m while the low priority pod has a CPU
request of only 10m. The workload applied is the same as the one
applied during Experiment 1. During the �rst test, both pods should
receive an equal amount of CPU cycles. The results of the the test
should indicate signi�cantly higher 95th percentile latencies when
compared to the results from Experiment 1, because the Cassandra
pod cannot use all of the resources on the node. During the second

Figure 4. Second worker node CPU usage during the �rst test of
Experiment 2. The deployed applications receive an equal share of
the available CPU.

Figure 5. Second worker node CPU usage during the second test
of Experiment 2. As the Cassandra workload rises, the amount of
CPU cycles granted to the low priority application decreases.

test, Cassandra’s performance should only be a�ected slightly due
to the aforementioned cpu-shares mechanism.

Results. Figure 4 shows the CPU usage of both the Cassandra pod
and the low priority pod during the �rst test, when their requests
are equal. It shows that the available CPU is split equally between
both pods. As expected, Figure 2 illustrates that the proposed SLO
gets violated at about half the amount of requests per second when
compared to Experiment 1.

Figure 5 shows the worker node’s CPU usage during the sec-
ond test of this experiment. As the amount of CPU needed by the
Cassandra pod increases, the amount of CPU available to the low
priority pod decreases, which is according to expectations. The 95th
percentile latencies shown in Figure 2 illustrate a slight increase of
latencies when compared to the Experiment 1.

The slight decrease in performance comes with the bene�t of
a higher resource utilization. Comparing the worker node’s total
CPU usage during Experiment 1 to the node’s total CPU usage in
this test, the latter shows a signi�cantly higher resource utilization
when the workload of the Cassandra pod is low.

4.3 Experiment 3: Determining the e�ects of bursty
workloads

In this experiment, a bursty workload is applied to examine its
e�ects on Cassandra’s performance. In the previous experiment,
Cassandra could process 350 requests per second without violating
the proposed SLO. This experiment should clarify whether Kuber-
netes can divide resources in time so that Cassandra can process
the bursts of 350 requests per second without violating the SLO.

Setup. The setup for this experiment is equal to the one used in
Experiment 2. In this experiment, 5 minutes of a manageable work-
load (200 requests per second) is applied, followed by a one minute
burst of 350 requests per second. This pattern is repeated 20 times.

3



Middleware ’19, December 09–13, 2019, UC Davis, CA, USA S. Verreydt et al.

Figure 6. Second worker node CPU usage during Experiment 3.

Results. Figure 6 shows the resource utilization during this exper-
iment. It depicts the expected behavior: during a burst, CPU cycles
are taken away from the low priority application and granted to
the high priority one. The low priority application is allowed to use
more resources in between bursts, increasing cost-e�ciency. The
experiment controller reported an average 95th percentile latency
of 109.3 ms during the bursts, which is comparable to the latencies
reported during the previous experiment at 350 requests per second.
The type of workload, bursty or more seasonal, thus seems to have
no e�ect on the operation of the cpu-shares mechanism.

4.4 Experiment 4: Determining the e�ects of the
Kubernetes HPA on Cassandra performance

The goal of this experiment is to validate the correct performance
of the HPA in combination with the application at hand, Cassandra.

Setup. In this experiment, the HPA is added to the cluster, and
the third worker node is made available to deploy a replica of the
Cassandra application on. The low priority pod is removed from
the cluster. The workload described in Experiment 1 will be applied
to Cassandra. The HPA is con�gured to scale Cassandra when its
CPU usage rises above 110% of its CPU request, so at around 1650
millicores. 110% is selected as the point to scale as spinning up a
new replica takes some time. Scaling when the node’s resources are
fully used may be too late and may thus result in SLO violations.

Results. Figure 7 shows the CPU usage of both the primary Cas-
sandra pod and the replica added by the HPA. The graphs illustrate
that a new Cassandra replica is added when scaling threshold is
breached. Despite this, the load on the original Cassandra replica
does not decrease when the new replica is activated. Since the ex-
periment controller sends the workload to the Cassandra service,
and this service should load balance over all available replicas, this
is not in line with expectations. The 95th percentile latencies of
the requests, shown in Figure 8, re�ect this unexpected behavior.
Instead of the latencies going down when a new replica is added,
they go up signi�cantly. The full explanation is beyond the scope
of this paper. Truyen et al. [17] found that Kubernetes introduces a
performance overhead when running Cassandra.

4.5 Experiment 5: Determining the e�ects of the
Kubernetes HPA on the SaaS application performance

The previous experiment is redone with the arti�cial SaaS applica-
tion (introduced in §3.1) replacing Cassandra. Through two tests,
this experiment veri�es whether the performance of the SaaS ap-
plication increases after a replica is added, or if it encounters the
same scalability issues in Kubernetes as Cassandra.

Setup. The SLO posed for the SaaS application is equal to the
one posed for the Cassandra application in Experiment 1. Two
separate tests are run. The �rst one subjects the SaaS application

(a) Second worker node’s CPU usage

(b) Third worker node CPU usage

Figure 7. CPU usage during Experiment 4. At 110% of the CPU
request, the given CPU threshold, a new Cassandra replica is added
by the HPA. The CPU usage of the original replica does not de-
crease when the new replica is added, indicating scalability issues
of Cassandra in Kubernetes.

Figure 8. 95th percentile latencies during Experiment 4. The laten-
cies increase rather than decrease when a replica is added.

to a linearly increasing workload to see how much requests one
replica can handle. The SaaS application’s CPU request is set to 1.5
CPU and it is subjected to a linearly increasing workload similar
to the one described earlier. For the second test, the HPA is added
to the cluster and linearly increasing workload is again applied to
the SaaS application. Again, 110% of the request is selected as the
point of scaling for the HPA.

Results. The blue and red graphs in Figure 9 show the latencies
recorded during this experiment. The SaaS application is able to
process 150 requests per second without the HPA. Figure 10 illus-
trates that at around 150 requests per second, the CPU in the node
is fully used up, con�rming that CPU is the bottleneck. With the
HPA, the application is able to process 250 requests per second
without violating the SLO. This is slightly less than double the 150
requests per second which the SaaS application can process without
the HPA. Hence, there is still some overhead associated with scal-
ing the SaaS application, but it is relatively small compared to the
overhead detected when scaling Cassandra in Kubernetes. Figure
11 con�rms that the workload is distributed over the replicas.

4.6 Experiment 6: Determining the e�ects of bursty
workloads on the performance of the Kubernetes HPA

The goal of this experiment is to test how the Kubernetes HPA
performs when the workload is bursty rather than linearly increas-
ing. Even with the HPA added to the cluster, the SaaS application

4



Leveraging Kubernetes for adaptive and cost-e�icient resource management Middleware ’19, December 09–13, 2019, UC Davis, CA, USA

Figure 9. 95th percentile latencies during Experiments 5 and 7.

Figure 10. Second worker node CPU usage during the �rst test of
Experiment 5.

(a) Second worker node CPU usage.

(b) Third worker node CPU usage.

Figure 11. CPU usage during the second test of Experiment 5.
The CPU usage of the original replica decreases when the HPA
schedules a new replica of the SaaS application.

might not be able to process bursts of 250 requests per second, since
starting a new replica can be slow.

Setup. The setup for this experiment is the same as the one used
during the second test of the previous experiment. The bursty
workload applied consists of �ve minutes of 60 requests per second
followed by a one minute peak of 250 requests per second. This
pattern is repeated 20 times.

Results. Figure 12 shows the worker node’s CPU usages. The
graphs illustrate that during the �rst couple of bursts, no scaling
happens. This is unexpected since the scaling threshold is clearly
breached. The latencies also report SLO violations during these
bursts. One possible explanation is that the HPA does not poll the
resource usage during the burst and thus does not notice the burst.
This is, however, not the case, since the HPA queries the resource
utilization every 15 seconds by default, and a burst lasts for 60 sec-
onds. Another observation made from this experiment’s results is
that the HPA does not scale the application down after each burst.

(a) Second worker node CPU usage.

(b) Third worker node CPU usage.

Figure 12.CPU usage during the �rst test of Experiment 6. Replicas
are added and removed inconsistently.

(a) Second worker node’s CPU usage.

(b) Third worker node CPU usage.

Figure 13. CPU usage during the second test of Experiment 6.
Increasing the time between bursts to 7 minutes, replicas are not
removed inbetween bursts, which is not as expected.

The HPA’s algorithm details [14] proved insu�cient to �nd the
cause of these inconsistent scaling decisions.

It is possible that the HPA does not scale down the SaaS applica-
tion since the default downscale stabilization parameter of the HPA
algorithm being �ve minutes [15]. This parameter speci�es a pe-
riod of time during which the HPA considers all recommendations
before scaling down. In other words, the HPA only scales down
if its decision to scale down has not changed for �ve minutes. To
verify this, another test is run where the downtime between each
burst is set to 7 minutes. The other experiment parameters remain
unchanged. Figure 13 shows the CPU usages during this test. The
HPA scaled up the SaaS application during the �rst burst, but did
not scale it down until after the test was completed.

Neither these experimental results nor the o�cial documentation
about the HPA [14] clarify how the HPA decides when to scale an
application. Discovering the cause of this unexpected behavior is

5



Middleware ’19, December 09–13, 2019, UC Davis, CA, USA S. Verreydt et al.

(a) First worker node’s CPU usage.

(b) First worker node’s CPU usage.

Figure 14. CPU usage during Experiment 7. A new replica is added
when the scaling threshold is breached, and the freed up resources
are made available to the low priority application.

left for future work. The results show, however, that the HPA is
un�t to process bursty workloads e�ectively.

4.7 Experiment 7: Determining the e�ects of combining
the Kubernetes HPA with the presence of a low
priority pod

Experiment 2 illustrated that co-locating a high and low priority
pod has a minor impact on the high priority application’s perfor-
mance, while in increases the overall cost-e�ciency. The goal of
this experiment is to test whether this is still the case when the
HPA is added to the cluster.

Setup. The scaling point for the SaaS application is again set to
110%. The application is subjected to the linearly increasing work-
load described earlier.

Results. The green graph in Figure 9 shows the latencies recorded
during this experiment. They are only slightly higher compared to
the latencies recorded during Experiment 5. This slight decrease
in performance again comes with the bene�t of a higher resource
utilization, as illustrated by Figure 14a. The low priority pod is able
to use the excess of resources on the node during low workloads.
As the workload rises, the low priority pod is given access to less
CPU cycles. When a new replica of the SaaS application is added to
the cluster, resources are freed up for the low priority pod to use.

4.8 Threats to validity
Some of the conclusions drawn from the experiments results may
only be valid for the speci�c setup used in this paper. The performed
experiments considered an environment with two user applications:
one high priority application and one low priority application. Set-
ting suitable requests and limits can, however, become a complex
task if multiple pods with each di�erent priorities are scheduled
on the same node.

The type of test applications used can also impact the experiment
results. The arti�cial SaaS application has a very short start-up time,
making it well suited to be horizontally scaled. This may not be
the case for other applications. Furthermore, this paper assumed
that empty nodes were available for new replicas to be scheduled
on. In practice, nodes may need to be acquired from IaaS providers
and con�gured to the speci�c environment before they are ready
to host applications. This could further increase the start-up time
of new replicas.

5 Conclusion
This paper described the e�ects of di�erent resource management
mechanisms o�ered by Kubernetes, namely resource allocation via
request and limit con�gurations and the Horizontal Pod Autoscaler.
In environments with a small amount of applications, experiments
show that choosing proper request con�gurations increases cost-
e�ciency without major drawbacks. This was veri�ed for a Cas-
sandra based application and for an arti�cial SaaS application, as
well as for both seasonal and bursty workloads. Due to an overhead
introduced by running Cassandra on Kubernetes, scaling Cassan-
dra in Kubernetes decreases performance instead of increasing it,
regardless of the scaling algorithm used. The HPA performs well
for an arti�cial SaaS application if the workload is seasonal, even if
pods are co-located. For bursty workloads, other approaches may
be preferred. In conclusion, despite some limitations, the scaling
capabilities of Kubernetes show great potential to prevent SLA vio-
lations and increase resource cost-e�ciency in container-centric
environments.

References
[1] M. Ahmadi and N. Aslani. Capabilities and advantages of cloud computing in the

implementation of electronic health record. Acta Informatica Medica, 26(1):24–28,
2018. Accessed: 2018-11-19.

[2] Wito Delnat and Eddy Truyen. K8-scalar. h�ps://github.com/k8-scalar/k8-scalar/
blob/master/docs/overview.md. Accessed: 2019-08-02.

[3] Wito Delnat, Eddy Truyen, Ansar Ra�que, and Joosen Wouter Van Landuyt, Dim-
itri. K8-scalar: A workbench to compare autoscalers for container-orchestrated
database clusters. In 2018 IEEE/ACM 13th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). ACM, 2018.

[4] Umesh Deshpande. Caravel: Burst tolerant scheduling for containerized stateful
applications. In 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS), November 2019.

[5] Cloud Native Computing Foundation. Creating a single master cluster with
kubeadm. h�ps://kubernetes.io/docs/setup/production-environment/tools/
kubeadm/create-cluster-kubeadm/. Accessed: 2019-06-13.

[6] Cloud Native Computing Foundation. In-place Update of Pod
Resources. h�ps://github.com/kubernetes/enhancements/blob/
29a22b61241b35bb280de83edc0aee40d1bd87bf/keps/sig-autoscaling/
20181106-in-place-update-of-pod-resources.md. Accessed: 2019-09-09.

[7] Cloud Native Computing Foundation. Kubernetes Github page. h�ps://github.
com/kubernetes/kubernetes/. Accessed: 2018-11-19.

[8] Cloud Native Computing Foundation. What is a Pod? h�ps://kubernetes.io/docs/
concepts/workloads/pods/pod/. Accessed: 2019-03-08.

[9] OpenStack Foundation. h�ps://www.openstack.org/. Accessed: 2019-08-13.
[10] Google.com. Kubernetes best practices: Resource requests

and limits. h�ps://cloud.google.com/blog/products/gcp/
kubernetes-best-practices-resource-requests-and-limits. Accessed: 2019-03-08.

[11] In�uxData. In�uxdb. h�ps://www.influxdata.com/. Accessed: 2019-08-02.
[12] Andrë Jacobs. Haalbaarheidsstudie van container orchestratie voor performantie-

isolatie in multi-tenant saas-applicaties, 2017.
[13] Kubernetes. Heapster. h�ps://github.com/kubernetes-retired/heapster/. Ac-

cessed: 2019-08-02.
[14] Kubernetes. Horizontal pod autoscaler: Algorithm details. h�ps://kubernetes.io/

docs/tasks/run-application/horizontal-pod-autoscale/#algorithm-details. Ac-
cessed: 2019-08-12.

[15] Kubernetes. Horizontal pod autoscaler: Support for cooldown/delay.
h�ps://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
#support-for-cooldown-delay. Accessed: 2019-08-12.

[16] Grafana Labs. Grafana. h�ps://grafana.com/. Accessed: 2019-08-02.
[17] Eddy Truyen, Dimitri Van Landuyt, Bert Lagaisse, and Wouter Joosen. Per-

formance overhead of container orchestration frameworks for management of
multi-tenant database deployments. volume Part F147772. ACM, 2019.

[18] Jonathon Paul Wong, Anthony Kwan, and Hans-Arno Jacobsen. Hyscale: Hybrid
scaling of dockerized microservices architectures. In 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), 2019.

6

View publication statsView publication stats

https://github.com/k8-scalar/k8-scalar/blob/master/docs/overview.md
https://github.com/k8-scalar/k8-scalar/blob/master/docs/overview.md
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
https://github.com/kubernetes/enhancements/blob/29a22b61241b35bb280de83edc0aee40d1bd87bf/keps/sig-autoscaling/20181106-in-place-update-of-pod-resources.md
https://github.com/kubernetes/enhancements/blob/29a22b61241b35bb280de83edc0aee40d1bd87bf/keps/sig-autoscaling/20181106-in-place-update-of-pod-resources.md
https://github.com/kubernetes/enhancements/blob/29a22b61241b35bb280de83edc0aee40d1bd87bf/keps/sig-autoscaling/20181106-in-place-update-of-pod-resources.md
https://github.com/kubernetes/kubernetes/
https://github.com/kubernetes/kubernetes/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://www.openstack.org/
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-resource-requests-and-limits
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-resource-requests-and-limits
https://www.influxdata.com/
https://github.com/kubernetes-retired/heapster/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#algorithm-details
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#algorithm-details
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#support-for-cooldown-delay
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#support-for-cooldown-delay
https://grafana.com/
https://www.researchgate.net/publication/336825542

	Abstract
	1 Introduction
	2 Related work
	3 Test Environment
	3.1 Deployed applications

	4 Results
	4.1 Experiment 1: Determining the effects of request and limit configurations
	4.2 Experiment 2: Determining the effects of co-locating a high and low priority application
	4.3 Experiment 3: Determining the effects of bursty workloads
	4.4 Experiment 4: Determining the effects of the Kubernetes HPA on Cassandra performance
	4.5 Experiment 5: Determining the effects of the Kubernetes HPA on the SaaS application performance
	4.6 Experiment 6: Determining the effects of bursty workloads on the performance of the Kubernetes HPA
	4.7 Experiment 7: Determining the effects of combining the Kubernetes HPA with the presence of a low priority pod
	4.8 Threats to validity

	5 Conclusion
	References

