
Reducing cold starts during elastic scaling of containers in
Kubernetes

Emad Heydari Beni, Eddy Truyen, Bert
Lagaisse, Wouter Joosen

{firstname.lastname}@cs.kuleuven.be
imec-DistriNet, KU Leuven, Belgium

Jordy Dieltjens
jordy.dieltjens@gmail.com

KU Leuven, Belgium

ABSTRACT
Automatic scaling of containers is an important feature to handle
fluctuating workloads. However, the delay caused by the time to
bootstrap a container has an impact on applications with deadline-
based Service-Level Objectives (SLOs). This delay is called the cold
start problem. Many techniques have already been proposed to
tackle this problem but not all techniques have been integrated
and evaluated in Kubernetes, the de-facto standard in container
orchestration. This paper combines and evaluates three techniques
in the context of Kubernetes: (i) pre-creation of network containers,
(ii) using container images that enable sharing of linked libraries
in memory and (iii) extending the declarative configuration man-
agement approach of Kubernetes with imperative configuration for
creating multiple application containers in parallel. A prototype
of the approach is implemented and tested on a Java-based Spring
Boot application where the cold start problem occurs due to various
library dependencies. Our findings illustrate that the use of con-
tainers that allow for library sharing already has a large, positive
impact when starting up a single container. The pre-creation of
network containers in combination with imperative configuration
enables the application to meet deadline-driven SLOs without a
non-deterministic delay that appears in Kubernetes when multi-
ple containers are created in parallel. We conclude that the use of
container images that allow for library sharing is a must for all
applications that require fast container start-ups in Kubernetes. Pre-
creation of network containers when combined with imperative
configuration also has a positive impact on SLO compliance during
elastic scaling of containers.

CCS CONCEPTS
• Software and its engineering→ Software performance;Cloud
computing; Software as a service orchestration system;

KEYWORDS
Cold start, Auto-scaling, Container frameworks, Serverless
ACM Reference Format:
Emad Heydari Beni, Eddy Truyen, Bert Lagaisse, Wouter Joosen and Jordy
Dieltjens. 2021. Reducing cold starts during elastic scaling of containers in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8104-8/21/03. . . $15.00
https://doi.org/10.1145/3412841.3441887

Kubernetes. In The 36th ACM/SIGAPP Symposium on Applied Computing
(SAC ’21), March 22–26, 2021, Virtual Event, Republic of Korea. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3412841.3441887

1 INTRODUCTION
New cloud computing execution models such as serverless comput-
ing have become popular recently [1]. Software providers offer their
services through microservices or purely serverless architecture. In
that regard, one of the emerging and widely adopted paradigms of
delivering software is the use of OS-level virtualization such as con-
tainers [20]. To facilitate managing an application as a distributed
set of containers, container orchestration frameworks are used. The
popular examples are Docker containers and Kubernetes [2]. Ku-
bernetes has pioneered in declarative configuration management,
where a control loop detects differences between a desired and
actual system state, and a policy-rich scheduler that takes into ac-
count expressive placement constraints for placing containers on a
cluster of worker nodes.

Automatic scaling of functions is an inherent feature of serverless
computing [1, 12]. Upon each function call, one or more contain-
ers need to be started or elastically scaled out based on different
workloads. Even though containers are considered to have faster
startup times compared to traditional virtual machines, the latency
caused by the time to (i) bootstrap containers, (ii) prepare the soft-
ware environments, and (iii) initialize the user code has an impact
on some applications [4, 12], especially multi-tenant services with
strict service level agreements (SLAs). This problem is called “cold
start”. It sometimes takes seconds or minutes to have a container
and the application up and running.

To reduce this cold start latency, various techniques have been
already introduced, e.g. using snapshots [6], lazy fetching of Docker
images [8] and container queues [15, 18, 19]. However, there are
always trade-offs. In particular, the queue-based approaches mostly
sacrifice memory to obtain a faster start-up time since containers
are pre-launched. In the context of the serverless middleware Open-
Whisk, Mohan et al. [19] improved this deficiency by pre-creating
and caching a pool of reusable networking endpoints, namely net-
work containers. When a function container is created, an existing
network container gets bound to it. This approach results in 80% re-
duction in execution time in comparison to cold queues and several
orders of magnitude reduction in memory footprint. However, this
technique has not yet been evaluated in the context of Kubernetes.

Moreover, in a serverless setting, or auto-scaling in general,
software dependencies are redundantly loaded in memory when
containers are replicated. In particular, recent research has shown
that replicated containers can share common libraries in memory,
provided that the used container image encapsulates the libraries

https://doi.org/10.1145/3412841.3441887
https://doi.org/10.1145/3412841.3441887

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Heydari Beni et al.

in separate image layers. [9]. This technique has also been reported
to reduce startup times as well [24].

Contributions. In this paper, we extend Kubernetes with an
imperative configuration management approach to reduce the cold
start problem when auto-scaling containers in parallel.

We have found that in Kubernetes a non-deterministic delay
appears in container start-up times when creating multiple appli-
cation containers in parallel on the same node. The cause of this
delay is due the declarative configuration management approach of
Kubernetes where various controllers act upon differences between
desired and actual system state.

It has already been shown before that declarative and imperative
configuration management are complementary techniques [3]. Our
imperative approach uses a script to create multiple containers
in parallel. However, it builds upon the technique introduced by
Mohan et al. [19] to still benefit from the advantages of Kubernetes’
declarative configuration management approach and its policy-rich
scheduler. More specifically, to realize a queue of reusable network
containers in Kubernetes, we create a pool of empty pods (i.e. pod
is a group of containers). Each pod comes with a network container
since network containers can only be instantiated in a pod. To scale
out the application in an imperative fashion, our scaler selects one
or more of these pods and it launches a number of application
containers by injecting these into the selected pods.

Our research goals are threefold:

(1) The first goal is to see whether creating a pool of network
containers (also called pause containers) in advance has a
positive effect on the cold start problem in Kubernetes.

(2) The second goal is to investigate the impact of container-
based library sharing on the cold start problem when com-
bined with network containers technique in Kubernetes.

(3) The last goal is to compare imperative and declarative con-
figuration management along with the two aforementioned
techniques. The imperative approach creates multiple con-
tainers by means of an imperative script, whereas the declar-
ative approach employs a control loop with a policy-rich
scheduler.

A prototype of the approach is implemented and tested on a Java-
based Spring Boot application [21] where the cold start problem
occurs. This application is a simple job processing microservice,
which has a variable amount of users. The intention is to test the
effectiveness of the approach with multiple users submitting jobs
at the same time. As a validation, we compare our approach with
using the default declarative approach of Kubernetes for increasing
or decreasing the number of replicated Pods.

Findings. We have evaluated our approach with fluctuating
workloads. We could deduce from the experiments that using con-
tainer images that support library sharing has the greatest impact
on the "cold start" problem. Library sharing also had a positive
but small effect on the start-up of multiple containers in parallel.
After all, this provides an extra reduction in time for starting up
application dependencies (e.g. the Java Virtual Machine (JVM) and
Tomcat server). Finally, the effectiveness of the network container
queue is limited, but in conjunction with the imperative approach,
it results in faster boot time of containers since it can be done in
parallel. The imperative approach further enables the application

to meet SLA targets without a non-deterministic delay that appears
in the declarative approach when multiple Pods must be created at
the same time due to concurrent user requests.

The remainder of this paper is structured as follows. In §2 and
§3, we present the necessary background and related work on con-
tainers and the cold start problem. Then, §4 discusses how reusable
network containers, library sharing and imperative configuration
can be realized in Kubernetes. Subsequently, §5 presents our evalu-
ation. Finally, §6 presents our conclusions.

2 BACKGROUND
In this section, we introduce: (i) Kubernetes and some of its under-
pinning components, (ii) the differences between declarative and
imperative configuration, and (iii) a brief definition of the cold start
problem in the context of containers.

2.1 Kubernetes
Kubernetes is a container orchestration framework commonly de-
ployed and used by researchers and practitioners. It facilitates the
deployment, (auto)scaling and management of container-based ap-
plications through declarative configuration files. A pod is a group
of containers that share storage and network resources [13]. Pods
are the smallest unit of deployment in Kubernetes. A deployment
is used to get a pod or a ReplicaSet of a pod to a certain state. The
deployment controller is responsible for changing the current state
to the requested state. CPU and memory of compute resources (con-
tainers or pods) can be managed by guaranteed resource requests
and maximum resource limits.

Pause containers. Each pod has a pause container. A pause
container is responsible for the creation of a shared network and a
namespace for the other containers in the pod [14]. If any container
within a pod fails, the entire pod does not restart thanks to pause
containers. This is because this container ensures that the network
namespace and PID namespace remain. We use the terms pause
and network container interchangeably throughout this paper.

Internal components. In Kubernetes, the control plane, which
manages the worker nodes and pods, is composed of schedulers, API
servers, and an etcd database. Schedulers are responsible for suit-
able pod placements based on different scheduling decisions. API
server exposes the Kubernetes functionalities. The etcd database is
a consistent and highly-available key-value store as a backing store
for all cluster data [13]. The worker nodes host pods. Kubelet is an
agent on each node responsible for making sure that containers are
running and healthy [13].

2.2 Declarative and imperative systems.
Declarative approach. In a declarative system, the client is aware
of a desired state, and the system is provided with a representation
of this state, through which it can come up with a set of instructions
to reach that state from the current state [23]. In Kubernetes, this
approach is managed by various controllers. A representation of
the pods is sent to the API server. After a few security checks, it
stores the resource in the etcd database. The scheduler afterwards
performs pod placement process based on this information. Based
on scheduling decisions, the kubelets are contacted to start the

Reducing cold starts during elastic scaling of containers in Kubernetes SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

containers. If more pods are planned to be started, that does not
happen simultaneously and in parallel.

Imperative approach. In an imperative system, the client is
aware of a set of instructions to bring the system to a desired
state [23]. Kubernetes operates as a declarative system through
the API server. An imperative approach would bypass many steps
such as scheduling and operate by communicating directly with
the container runtime (e.g. the Docker daemon) on the nodes. That
means pods can now be created in parallel if it is required.

2.3 Cold Start
When a serverless application serves an invocation request, or a
microservice scales out due to a particular workload, one or more
containers get created and started. To achieve this, the system
requires to (i) bootstrap containers, (ii) prepare the software en-
vironments, and (iii) initialize the user code [4, 12]. This is called
cold start. The execution of these steps might cause latency due to
memory footprint, runtime, code package size, and more [5].

3 RELATEDWORK
We present the related work in two groups: (i) rapid deployments
where the focus is on speeding up the container ecosystem, and (ii)
queue-based approaches where different techniques based on pools
of containers are researched.

3.1 Rapid deployments
Caching and snapshots. Cadden et al. [7] present a technique
based on dependency planning by introducing two caching solu-
tions to improve the startup time of a task. In brief, their cache-
aware scheduler schedules tasks by creating containers on nodes
where there is an exact container image cached, or a sub-layer
of it. Although unikernels are inherently different in comparison
to Docker containers, Fu et al. [10] introduce an approach based
on creating snapshots of unikernels ready to execute functions.
Upon a function invocation, unikernels request the snapshots of
this function to speed up its invocation.

Lazy image loading. In this approach, it is shown that only a
small part of the container images (e.g. 6% in Docker images [11])
is enough to start a container, and the rest can be loaded lazily.
FogDocker [8] presents a base image, after an analysis process on
an image, with the essential files required to boot the container.
The rest of the original image will be downloaded asynchronously.
However, it is hard to mitigate application crashes at runtime when
a required file is not yet fetched. Likewise, Slacker [11] uses the
same technique mixed with layer-based snapshots and lazy cloning,
i.e. this means that if Slacker wants to clone a particular layer of a
Docker image, it only clones that specific layer and not the whole
image. The advantage of this approach is that the pushing and
pulling of containers run more smoothly, and as a result, the start-
up time is reduced. A small trade-off is that the full runtime of
applications becomes longer in experiments with a large load.

These techniques are not always compatible with each other.
Some of the approaches based on Docker images are not always
feasible in every situation, e.g. the "Lazy" approaches [8, 11], where
we do not directly download all files from an image. This can become
problematic with large applications that use a lot of files to operate.

3.2 Queue-based approaches
These techniques aim at preparing the infrastructural components
(e.g. containers) as early as possible and keep them in pools. A warm
queue of containers is a queue in which the containers are ready to
process clients’ requests. Lin et al. [15] reduce cold start latency by
85% through employing a pool of warm pods using Knative. How-
ever, the pod migration takes 2 seconds in this approach. Likewise,
McGrath et al. [18] use cold queues to monitor the memory capacity
of the worker nodes to start up new containers, and warm queues
to keep track of existing warm containers. The other approach is
to use pre-warmed queues where containers are started but the
application is not yet initialized [22]. However, this technique is
appropriate for stateless applications, especially those that do take
much time to initialize, e.g. scripting languages like Python rather
than compiled runtimes like Java and .NET [5].

The warm and pre-warmed queues are effective at the cost of
high memory consumption. Mohan et al. [19] present an approach
based on reusable network containers in OpenWhisk, inspired by
pause containers in Kubernetes. In this way, they reduced the cold
start latency by skipping the networking step.

4 AN IMPERATIVE APPROACH TO COLD
START

In this section, we present three strategies, namely using (i) a pool of
reusable network containers, (i) a layer-based library sharing, and
(iii) imperative configuration of application containers, to mitigate
cold start problem in Kubernetes.

4.1 Reusable network containers
In this approach, we aim at pre-creating the network infrastruc-
ture of application containers to decrease the cold start time. To
achieve this, a queue of warm network containers can be used.
When scaling-out is required and a new application container must
be started, our scaler binds the newly started container to a warm
network container. Afterwards, the network container is removed
from the queue and placed in a hot queue, meaning that it is occu-
pied. Using the hot queue, the network container can be released
and put back in the network container queue when the application
container is no longer required. That ensures reusability.

In Kubernetes, network containers, also known as pause con-
tainers, cannot be created on a stand-alone basis. To have a queue
of pause containers, our approach is based on creating lightweight
pods. Each pod is composed of a pause container as a result.

Pod injection. When a scale-out request arrives, an application
container is injected to a pod as follows: our scaler controller starts
an application container; it picks an entry from the queue (i.e.
the entry includes the pause container ID, IPC namespace and
cgroup of each pod in the queue); it configures the container to
use the network namespace, cgroup and IPC namespace of the
pod; and it places the pod in the hot queue to know that the pod is
already running a worker instance. We call this “pod injection” as
an application container is injected into a pod without using the
Kubernetes API, and instead by communicating directly with the
worker nodes.

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Heydari Beni et al.

4.2 Layered-based Library Sharing
Layered-based library sharing is a technique with which external
components and software dependencies of an application are en-
capsulated in various layers of container images to mitigate the
cold start problem. Other work showed that library sharing reduces
the memory footprint by sharing common portions of memory be-
tween containers [9]. Our hypothesis is that a layer-based approach
has an effect on the startup time of an application. The previous
research uses this technique to reduce the image size. That means
if a layer with the library already exists, it can be used by multiple
containers. This basically makes the container image (e.g. Docker)
smaller for the second container, as it no longer needs to provide
the libraries for its applications; therefore, it reduces the cold start.

Programming languages influence the startup time of applica-
tions [17]. For example, Java applications typically include most
dependencies in JAR files. In a JAR file, there are application classes,
libraries, frameworks and a manifest file. If we work with a large
JAR file, we only have 1 layer containing the entire application. So
it is impossible to benefit from library sharing. To speed up the
container image retrieval, a JAR file can be split into multiple layers.

4.3 Imperative scaling in Kubernetes
Using an imperative approach in Kubernetes, our scaler commu-
nicates directly with the worker nodes, bypassing the Kubernetes
controller components. In a declarative approach, a state change
request (e.g. deployment of a pod) is processed by Kubernetes API,
various controllers and schedulers to implement a control loop to
mitigate unintended states (e.g. a node or container crash). More-
over, pods are started sequentially and placed one by one. But, our
imperative approach communicates directly with the container run-
time (e.g. the Docker daemon), start the application containers and
inject them into the network pods. Therefore, the entire process
can be done in parallel and at the same time. Our hypothesis is
that it considerably improves the application start up time when
an application requires to scale out.

5 EVALUATION
We aim to evaluate the effectiveness of the presented techniques,
namely (i) library sharing, (ii) employing a pool of network pods,
and (iii) the imperative approach, to mitigate the cold start problem.
We also evaluate how our imperative approach affects applications
with strict SLO requirements based on job completion time.

Firstly, a job-oriented microservice application is introduced
as our test application for the experiments. Secondly, we present
our research methodology and the experiments conducted in that
regard. Thereafter, we present our experiment setup and conclude
with the experimental findings and their discussion.

5.1 Test application
We perform our experiments on a job processing microservice
application (see Fig. 1). The application is composed of three parts:
(i) the users who create jobs and add them to the queue, (ii) the
queue where the active jobs are stored and (iii) the workers who are
responsible for periodically checking the queue for jobs. Users add
jobs to the queue. A job is a collection of tasks. When a lot of users
are actively busy and producing different workloads, extra workers

can be added to handle all possible requests. The Queue service and
the workers have been implemented using RESTful Spring Boot in
Java based on the Tomcat server.

Queue Service Worker
PollPush

Figure 1: Test application

5.2 Experiment Methodology
Methodology. To evaluate the techniques introduced in this

paper, four deployment variations of the test application, presented
in Section 5.1, are employed:

(1) 𝐷𝐶𝐿 where pods are created in a declarative way via Ku-
bernetes and its policy-based scheduler, i.e. the pause and
application containers are created together.

(2) 𝐼𝑀𝑃 where network pods are created in advance so that
we can use them to inject our application containers, i.e.
the injection of these application containers is done asyn-
chronously by running a script on the node on which a pod
are available.

(3) 𝐷𝐶𝐿 +𝐿𝐼𝐵 where everything is identical to 𝐷𝐶𝐿 except now
the Docker image of the application container consists of
multiple layers to allow library sharing.

(4) 𝐼𝑀𝑃 + 𝐿𝐼𝐵 where everything is identical to 𝐼𝑀𝑃 but with
library sharing as 𝐷𝐶𝐿 + 𝐿𝐼𝐵.

We employ the Locust [16] load testing tool to allow multiple
users to join the experiments. They register jobs in the queue to
start a scaling action. Each job that is being submitted by a user runs
in its own container. We repeat these workload tests for each of
the abovementioned deployment variations of the test application.
Throughout this process, we inspect the occurrence of different
events to measure the duration of: (i) starting the pause container,
(ii) application container startup delay, (iii) starting up the appli-
cation container, (iv) starting up the JVM, (v) starting up Tomcat
server, (vi) finalizing Spring Boot startup, and (vii) finishing the
first task. We analyze the effect of the deployment variations on
these durations to understand how the different techniques of our
approach affect the cold start problem.

Library sharing validation. Instead of using a large JAR file,
we extract 3 layers to reuse in our Docker file. To speed up the build
time of the Docker image, we have placed the layers that change
the least, such as libraries, above the classes. If the dependencies
are not changed, then the library layer does not need to change,
resulting in a faster build time. The library layer can also be easily
shared if we want to work with other applications.

No dependency layers
FROM openjdk:8-jdk-alpine
VOLUME /tmp
ADD target/worker.jar app.jar
ENTRYPOINT exec java -jar /app.jar

Layered library sharing
FROM openjdk:8-jdk-alpine
VOLUME /tmp
ARG LIB=target/
COPY $LIB/BOOT-INF/lib /app/lib
COPY $LIB/META-INF /app/META-INF
COPY $LIB/BOOT-INF/classes /app
ADD README.md README.md
RUN apk update java=8u191+
ENTRYPOINT exec java -cp "app:app/lib/*"
"be.kuleuven.WorkerApplication"

Reducing cold starts during elastic scaling of containers in Kubernetes SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

To validate that library sharing is properly implemented, we
use the pmap and smaps tools as used in [9]. It allows us to check
which libraries are being used, how much memory they share with
the other processes, and obtain more detailed information about
memory usage. We create two containers with the same image.
We perform this validation once with library sharing and once
without. Our results show that the libraries such as Tomcat, Spring,
Avalon, etc. have been successfully shared in the case with library
sharing; however, pmap and smaps shows no libraries in the "shared
memory" section in the other case. We can therefore conclude that
we have successfully shared our libraries with each other in our
library sharing Docker container.

Experiment setup.To ensure that the results are comparable, we
use the same environment for all experiments. This environment is
anOpenStack-based private cloud.We created four virtual machines
(VMs) where three of them belong to the Kubernetes cluster while
the fourth one is used for load testing. The operating system of
the VMs is Ubuntu 16.04. We used Kubernetes v1.12. The resource
allocation of the VMs is organized as follows: (i) one Kubernetes
master node with 2vCPU and 4GB RAM as the master node of
the cluster, (ii) one worker node with 4vCPU and 8GB RAM. This
worker node hosts both the test application and the scaler that is
responsible for deploying the worker pods, (iii) one worker node
monitoring with 2vCPU and 4GB RAM, and (iv) the load generator
node with 4vCPU and 8GB RAM to simulate the load of an external
user submitting jobs.

5.3 Experiments
In this subsection, we present our experiments and our findings.
We have performed two experiments:

(1) Experiment 1 to measure the total runtime of containers indi-
vidually (i.e. 1 – 6 containers were created) and understand
the impact of the presented techniques on cold start

(2) Experiment 2 to measure the start and end time of 6 contain-
ers with 1000 tasks, especially to understand the impact on a
scenario where there is a strict Service Level Objective (SLO)
such as job return time

5.3.1 Experiment 1. This experiment includes 6 rounds, and each
round has been executed against each of the deployment variations,
namely declarative (𝐷𝐶𝐿), imperative (𝐼𝑀𝑃), declarative with li-
brary sharing (𝐷𝐶𝐿 + 𝐿𝐼𝐵) and imperative with library sharing
(𝐼𝑀𝑃 + 𝐿𝐼𝐵). In the first round, only one container is launched for
one user, in the second round, 2 containers are launched for 2 users,
and so on up to 6 containers/users. We inspect the start-up time of
the pods with a granularity described in Section 5.2. We ran each
experiment at least 20 times and then averaged these results. Only
10 experiments have been performed with the six containers. We
also show the standard deviation on the graphs in red showing how
much the values differ from each other. In this paper, we investigate
the extreme cases: Round 1 with one container, and Round 6 with
six containers.

Round 1 (one container). Fig. 2a illustrates the first round in
which only 1 container has been started (i.e. the results of regis-
tering one user). We collected fine-grained information regarding
the startup of this container. We note that the strategies that use

library sharing have a major impact on the boot time of the Tom-
cat server as well as when starting a JVM instance. The reason
for this is that the libraries that Tomcat uses are provided with a
higher layer in the Docker image and we therefore benefit from
the layer-based library sharing that we introduced in Section 4.2.
A small trade-off is the execution time of the first task with the
library sharing strategies. We notice an increase when the Spring
boot is completed.

The imperative approach, in Fig. 2a, does not seem to have con-
siderable impact on the whole picture. That is because the Java
ecosystem, and most compiled runtime enterprise languages, are
slower at startup in comparison to scripting languages such as
Python and Ruby. However, to figure out the real advantage of cre-
ating the network containers in advance, we zoom in on the bottom
events of this chart regardless of the application deployed within
the container. Fig. 3a illustrates a closer look at the container-related
startup events. In this figure, the impact of creating a network con-
tainer in advance is more clearly indicated. We can understand, that
thanks to the creation of a network container in advance, we gain
about two seconds speedup. This is certainly an improvement, as it
does not depend on the programming language and the application
dependencies. We obtain these results since with the imperative
approach the pause containers were picked up from the pool of
pods. Moreover, the declarative approaches typically create the
pause containers first and then the application containers; there-
fore, there is a delay in between, which is avoided in the imperative
approaches as a consequence. In Fig. 3b, we zoom in on the duration
of the first task and notice that the standard deviation lines overlap.
When the standard deviation lines do not or almost not overlap, the
results are significantly different. In our case, however, we observed
that the durations of the first task completion were not significantly
different in this experiment.

Round 6 (six containers). Fig. 2b shows the timings of the dif-
ferent deployment variations for the sixth round where 6 containers
are started for 6 users. We performed the same experiments as in to
Round 1, but we seek to see the differences or correlations with the
previous observations in the other rounds. In this figure, we observe
that the library sharing technique continues to have a major impact
on the boot time of the Tomcat server and JVM. The duration of
starting up an instance of the Tomcat server is even almost halved.
However, the time of “finalizing spring boot startup” is doubled,
but the numbers are only in the range of ~150 milliseconds, which
is little compared to the benefit we get from the speedup of the
other dependencies (Tomcat and JVM).

In Fig. 4a, the startup times from Fig. 2b are illustrated separately
in which 6 containers (pods) have been started. Here we can deduce
that creating network containers in advance has a minimal impact.
However, if we do this together with an imperative configuration,
we notice a great improvement. The advantage is greatest with
successive containers. We notice this especially with container 6 of
this experiments. The reason is that Kubernetes needs to wait for all
pause containers and the predecessors to be created; that introduces
considerable delay. More precisely, to create 6 pods, Kubernetes
starts with creating the pause containers one by one. Once all
the pause containers have been created, it starts with creating
the application containers one by one. For instance, if we want to
know the total startup time of the 4th pod with the 𝐷𝐶𝐿 approach,

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Heydari Beni et al.

DCL IMP DCL+LIB IMP+LIB
Duration finish first task 2044.70 2130.70 3778.81 3867.10

Duration finalizing spring boot
startup

154.10 169.90 396.57 304.80

Duration starting up Tomcat
server 68230.95 65627.05 39771.05 38769.10

Duration starting up the JVM 15156.50 14801.55 9643.38 9639.75

Duration starting up the
application container

434.55 463.60 436.10 480.85

Application container startup
delay 1413.20 0.00 1426.57 0.00

Duration starting the pause
container 606.80 0.00 592.71 0.00

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Ti
m

e
in

 m
illi

se
co

nd
s

(a) The fined-grained start-up times and execution time of (round 1,
container 1) when only 1 container is scheduled to be created

DCL IMP DCL+LIB IMP+LIB
Duration finish first task 21498.18 19829.33 20608.80 20441.60
Duration finalizing spring boot

startup 171.45 182.89 331.60 371.80

Duration starting up Tomcat
server 66814.09 68945.44 38899.30 39053.90

Duration starting up the JVM 13897.64 14867.89 9097.70 9168.50
Duration starting up the

application container 611.36 1041.78 618.60 997.70

Application container startup
delay 7660.00 0.00 7503.40 0.00

Duration starting the pause
container

1401.82 0.00 1349.50 0.00

0.00

20000.00

40000.00

60000.00

80000.00

100000.00

120000.00

140000.00

Ti
m

e
in

 m
illi

se
co

nd
s

(b) The fined-grained boot-up and execution time of (round 6, con-
tainer 6) when 6 containers are scheduled to be created

Figure 2: Experiment 1 (round 1 and round 6)

application container 4 needs to wait till all pause containers (1...6),
and the application container 1, 2 and 3 are created and started.
Then, the container 4 can get created and started; by starting up
we mean the container not the application. The only drawback of
the imperative approach is that the duration of "starting up the
application container” increases. But it is a small trade-off. We can
conclude that the imperative approach is considerably beneficial
when multiple containers get started up simultaneously.

Findings. Based on the results of the experiment 1 (see Sec-
tion 5.3.1), several findings can be concluded as follows:

(1) The library sharing technique has the greatest impact across
all experiments. It resulted in a reduction in the start-up time
of the JVM and the Tomcat server. The only drawback is that
the duration of “finalizing spring boot” is getting longer, but
this is very little compared to the overall improvement.

(2) The library sharing technique has a negative impact on the
execution time of the first task. However, the standard error
bars overlap, which indicates that statistically the results of
these experiments are not significantly different. This means
that library sharing across multiple experiments does not
negatively impact the execution time of the first task.

(3) The approach to pre-create the network containers seems to
have a small impact on cold start when starting only one con-
tainer. The only advantage is that we can skip the network
creation step. However, the impact is greater when multiple
containers start up simultaneously. The reason for this is the

way Kubernetes creates its pods and containers. Firstly, it
creates the necessary pause containers before the application
containers. As a result, we observe a considerable impact
on the boot-up time, especially with the last container. In
the Kubernetes approach, the last container has to wait until
all pause containers and application containers have been
created before it can start its own creation process. A small
drawback with this technique is when several containers
are started simultaneously, the start-up of the application
container takes longer. However, this is again negligible in
comparison to the overall improvement.

5.3.2 Experiment 2. In this experiment, we primarily focus on the
start time of the application containers; creating the network con-
tainers in advance does not affect this experiment. The aims of
this experiment are (i) to examine the possible impact of different
strategies on the start and end time of the application, (ii) to realize
which technique is more suitable in case of having service layer
objectives (SLO) such as job completion time, and (iii) to under-
stand the impact of each approach on the CPU usage. We expect
that the strategies that start their containers the fastest will also
reach their optimal CPU usage faster. We test the techniques on
the aforementioned deployment variations of the test application
discussed earlier.

We let six users register in the application simultaneously. After
that, each user sends 1000 tasks to the application. The end time is
equal to the time when a user finished his 1000 tasks. We use Locust

Reducing cold starts during elastic scaling of containers in Kubernetes SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

0

500

1000

1500

2000

2500

3000

DCL IM
P

DCL+
LIB

IM
P+LI

B

Ti
m

e
in

 m
illi

se
co

nd
s

Duration starting up the application
container
Application container startup delay

Duration starting the pause
container

(a) The container startup events,
(round 1, container 1) based on
Fig. 2a

0

2000

4000

6000

8000

10000

12000

14000

DCL IM
P

DCL+
LIB

IM
P+LI

B

Ti
m

e
in

 m
illi

se
co

nd
s

Duration finish first task

(b) The duration of completion
of the first task (round 2, con-
tainer 1)

Figure 3: A closer look at Experiment 1 (round 1 and round
2)

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

DCL IM
P

DCL+
LIB

IM
P+LI

B

Ti
m

e
in

 m
illi

se
co

nd
s

Duration starting up the application
container

Application container startup delay

Duration starting the pause container

(a) The container startup events,
(round 6, container 1)

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

DCL
IM

P

DCL+LIB

IM
P+LIB

Ti
m

e
in

 m
illi

se
co

nd
s

Duration starting up the
application container
Application container startup delay

Duration starting the pause
container

(b) The container startup events,
(round 6, container 6)

Figure 4: A closer look at Experiment 1 (round 6)

to simulate theworkload generated by the users. To determinewhen
the 1000th task was executed, we look at the logs of the Docker
application to extract the time of the 1000th task. The start and
end time of each case are measured in relation to the start time of
the first container. In other words, if container 2 has started three

container 1

container 2 container 3

container 4 container 5 container 6

container 1
container 2 container 3

container 4 container 5
container 6

1045

1050

1055

1060

1065

1070

1075

1080

1085

1090

1095

0 1 2 3 4 5 6 7

Ti
m

e
in

 s
ec

on
ds

 (f
in

ish
ed

 1
00

0
ta

sk
s)

Time in seconds (startup times with respect to the first container)

DCL IMP DCL+LIB IMP+LIB SLO job return time

Figure 5: Experiment 2 with 6 containers

seconds after container 1, the startup time of container 2 is three
seconds.

Impact on the duration of processing all tasks. Fig. 5 illus-
trates that the imperative approach (𝐼𝑀𝑃 and 𝐼𝑀𝑃 + 𝐿𝐼𝐵) starts
all 6 containers before the start of container 2 of the ones with
declarative approaches (𝐷𝐶𝐿 and 𝐷𝐶𝐿 + 𝐿𝐼𝐵). This is due to the
asynchronous creation of the application containers using the im-
perative approach. Therefore, it means that the other containers do
not have to wait for container 1 to initiate their own start-up pro-
cess. Moreover, our library sharing approach has a positive impact
on the end times of this experiment. This impact comes from the
previously seen benefits of faster boot times for the Tomcat server
and JVM (see Experiment 1).

Meeting job completion time objective (SLO). In Fig. 5, the red
line represents the job return time as an SLO. An SLO is an agree-
ment that is made between the service provider and the customer.
The agreement is that 1000 tasks will be performed per container in
1055 seconds. If we look at our imperative approach, we conclude
that this deadline is easily achievable by all containers. With the
declarative approach, this SLO is no longer feasible for the fourth
container. This is because the 4th container has to wait for the cre-
ation of container 1, 2, 3 and all pause containers. We can deduce
that our imperative approach is effective to meet SLO deadlines
because these containers can start up in parallel.

Fastest containers reach optimal CPUusage faster. The cold
start problem also affects CPU usage. This problem causes the CPU
usage to increase steadily as shown in Fig. 6a. If we look at the
impact of library sharing in Fig. 6b, we can already observe an
improvement. We see a straight rise to the highest point. Fig. 6c
shows the effect of the imperative approach. The start-up phase of
this experiment shows an improvement in the CPU usage, but it
eventually fades. This is because this approach is mainly effective
for the start-up of the containers. Finally, we combine these two
strategies in Fig. 6d, where the two previously seen benefits are
combined. Our CPU usage is now rising in the beginning and right
to its peak.

SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea Heydari Beni et al.

(a) The declarative approach without library sharing

(b) The declarative approach with library sharing

(c) The imperative approach without library sharing

(d) The imperative approach with library sharing

Figure 6: CPU usage in Experiment 2

Findings. Based on the results of the experiment 2, our findings
are as follows:

(1) The imperative approach further enables the application to
meet SLO targets without a non-deterministic delay that
appears in the declarative approach when multiple Pods
must be created at the same time due to concurrent user
requests.

(2) These two techniques not only reduce the cold start but also
provide the application with the processing power (CPU) as
early as possible, resulting in a faster overall job completion
time.

6 CONCLUSION
This paper has investigated how a queue of reusable network con-
tainers, layer-based library sharing, and imperative configuration
management, when combined together, can improve the "cold start"
problem in Kubernetes. Cold start is a well-known problem in the
elastic scaling of containers, especially in serverless computing.
Sometimes several containers are required to be started simulta-
neously, and the applications deployed on these containers are
the same or share software dependencies, increasing the impact
of this problem. We evaluated the above-mentioned techniques
extensively in a deadline-oriented job processing microservice.

Our findings show that (i) the library sharing approach results in
a large reduction in the start-up time of software dependencies (e.g.
the JVM and Tomcat server), (ii) pre-creating network containers

has greater impact when multiple application containers are started
in parallel, (iii) the imperative configuration approach introduces
start-up time determinism and predictability, making this approach
more reliable for applications with SLOs such as job completion
deadlines.

REFERENCES
[1] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche

Ishakian, NickMitchell, VinodMuthusamy, Rodric Rabbah, Aleksander Slominski,
and Philippe Suter. 2017. Serverless Computing: Current Trends and Open Problems.
Springer Singapore, 1–20. https://doi.org/10.1007/978-981-10-5026-8_1

[2] David Bernstein. 2014. Containers and Cloud: From LXC to Docker to Kubernetes.
IEEE Cloud Computing 1, 3 (2014), 81–84. https://doi.org/10.1109/MCC.2014.51

[3] U. Breitenb ucher, T. Binz, K. Képes, O. Kopp, F. Leymann, and J. Wettinger. 2014.
Combining Declarative and Imperative Cloud Application Provisioning Based
on TOSCA. In 2014 IEEE International Conference on Cloud Engineering. 87–96.

[4] Eric A Brewer. 2015. Kubernetes and the path to cloud native. In Proceedings of
the sixth ACM symposium on cloud computing. 167–167.

[5] Renato Byrro. 2019. Can We Solve Serverless Cold Starts? https://dashbird.io/
blog/can-we-solve-serverless-cold-starts/

[6] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and
Jonathan Appavoo. 2019. SEUSS: Rapid serverless deployment using environment
snapshots. arXiv preprint arXiv:1910.01558 (2019).

[7] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and
Jonathan Appavoo. 2019. SEUSS: Rapid serverless deployment using environment
snapshots. arXiv preprint arXiv:1910.01558 (2019).

[8] Lorenzo Civolani, Guillaume Pierre, and Paolo Bellavista. 2019. FogDocker: Start
container now, fetch image later. In Proceedings of the 12th IEEE/ACM International
Conference on Utility and Cloud Computing. 51–59.

[9] José Bravo Ferreira, Marco Cello, and Jesús Omana Iglesias. 2017. More sharing,
more benefits? A study of library sharing in container-based infrastructures. In
European Conference on Parallel Processing. Springer, 358–371.

https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1109/MCC.2014.51
https://dashbird.io/blog/can-we-solve-serverless-cold-starts/
https://dashbird.io/blog/can-we-solve-serverless-cold-starts/

Reducing cold starts during elastic scaling of containers in Kubernetes SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea

[10] Silvery Fu, Radhika Mittal, Lei Zhang, and Sylvia Ratnasamy. 2020. Fast and Effi-
cient Container Startup at the Edge via Dependency Scheduling. In 3rd {USENIX}
Workshop on Hot Topics in Edge Computing (HotEdge 20).

[11] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. 2016. Slacker: Fast distribution with lazy docker containers. In
14th {USENIX} Conference on File and Storage Technologies ({FAST} 16). 181–195.

[12] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, et al. 2019. Cloud programming simplified: A berkeley view on
serverless computing. arXiv preprint arXiv:1902.03383 (2019).

[13] Kubernetes. 2020. Kubernetes Documentation. https://kubernetes.io/docs/
concepts/workloads/pods/

[14] Ian Lewis. 2017. The Almighty Pause Container. https://www.ianlewis.org/en/
almighty-pause-container

[15] Ping-Min Lin and Alex Glikson. 2019. Mitigating Cold Starts in Serverless
Platforms: A Pool-Based Approach. arXiv preprint arXiv:1903.12221 (2019).

[16] Locust. [n. d.]. Locust: An open source load testing tool. https://locust.io/. [Last
visited on September 28, 2020].

[17] Johannes Manner, Martin Endreß, Tobias Heckel, and Guido Wirtz. 2018. Cold
start influencing factors in function as a service. In 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC Companion). IEEE,
181–188.

[18] Garrett McGrath and Paul R Brenner. 2017. Serverless computing: Design, im-
plementation, and performance. In 2017 IEEE 37th International Conference on
Distributed Computing Systems Workshops (ICDCSW). IEEE, 405–410.

[19] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti, Naren Nayak,
and Vadim Sukhomlinov. 2019. Agile cold starts for scalable serverless. In 11th
{USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud 19).

[20] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and Larry
Peterson. 2007. Container-Based Operating System Virtualization: A Scalable,
High-Performance Alternative to Hypervisors. SIGOPS Oper. Syst. Rev. 41, 3
(March 2007), 275–287. https://doi.org/10.1145/1272998.1273025

[21] Spring. [n. d.]. Getting Started | Building an Application with Spring Boot.
https://spring.io/guides/gs/spring-boot/

[22] Markus Thommes. 2017. Squeezing the milliseconds: How to make
serverless platforms blazing fast! https://medium.com/openwhisk/
squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0

[23] Dominik Tornow. 2018. Imperative vs Declarative. https://medium.com/
@dominik.tornow/imperative-vs-declarative-8abc7dcae82e

[24] W. Wang, L. Zhang, D. Guo, S. Wu, H. Cui, and F. Bi. 2019. Reg: An Ultra-
Lightweight Container That Maximizes Memory Sharing and Minimizes the
Runtime Environment. In 2019 IEEE International Conference on Web Services
(ICWS). 76–82.

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://www.ianlewis.org/en/almighty-pause-container
https://www.ianlewis.org/en/almighty-pause-container
https://locust.io/
https://doi.org/10.1145/1272998.1273025
https://spring.io/guides/gs/spring-boot/
https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0
https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0
https://medium.com/@dominik.tornow/imperative-vs-declarative-8abc7dcae82e
https://medium.com/@dominik.tornow/imperative-vs-declarative-8abc7dcae82e

	Abstract
	1 Introduction
	2 Background
	2.1 Kubernetes
	2.2 Declarative and imperative systems.
	2.3 Cold Start

	3 Related Work
	3.1 Rapid deployments
	3.2 Queue-based approaches

	4 An imperative approach to cold start
	4.1 Reusable network containers
	4.2 Layered-based Library Sharing
	4.3 Imperative scaling in Kubernetes

	5 Evaluation
	5.1 Test application
	5.2 Experiment Methodology
	5.3 Experiments

	6 Conclusion
	References

