
The final authenticated version is available online at https://doi.org/10.1007/978-3-030-91431-8_13.

ThunQ: A Distributed and Deep Authorization
Middleware for Early and Lazy Policy

Enforcement in Microservice Applications

Martijn Sauwens, Emad Heydari Beni, Kristof Jannes, Bert Lagaisse, and
Wouter Joosen

imec-DistriNet, KU Leuven
{martijn.sauwens,emad.heydaribeni,kristof.jannes,

bert.lagaisse,wouter.joosen}@kuleuven.be

Abstract. Online software services are often designed as multi-tenant,
API-based, microservice architectures. However, sharing service instances
and storing sensitive data in a shared data store causes significant secu-
rity risks. Application-level access control plays a key role in mitigating
this risk by preventing unauthorized access to the application and data.
Moreover, a microservice architecture introduces new challenges for ac-
cess control on online services, as both the application logic and data
are highly distributed. First, unauthorized requests should be denied as
soon as possible, preferably at the facade API. Second, sensitive data
should stay in the context of its microservice during policy evaluation.
Third, the set of policies enforced on a single application request should
be consistent for the entire distributed control flow.
To solve these challenges, we present ThunQ, a distributed authorization
middleware that enforces authorization policies both early at the facade
API, as well as lazily by postponing authorization decisions to the ap-
propriate data context. To achieve this, ThunQ leverages two techniques
called partial evaluation and query rewriting, which support policy en-
forcement both at the facade API, as well as deep in the data tier.
We implemented and open-sourced ThunQ as a set of reusable compo-
nents for the Spring Cloud and Data ecosystem. Experimental results in
an application case study show that ThunQ can efficiently enforce autho-
rization policies in microservice applications, with acceptable increases
in latency as the number of tenants and access rules grow.

1 Introduction

Contemporary online services often provide a customer-facing API and adopt
an internal architecture based on application-level multi-tenancy and microser-
vices. Application-level multi-tenancy [10], as illustrated in Fig. 1, benefits from
economies of scale by sharing resources between the tenants, such as the appli-
cation and database. However, storing sensitive tenant data poses significant se-
curity risks. Application-level access control [34] is a key security technique that
mitigates these risks by enforcing authorization policies at the application-level

https://doi.org/10.1007/978-3-030-91431-8_13

2 M. Sauwens et al.

Shared Presentation Tier

Shared Business Tier

Shared Data Tier

Tenants

(a)

API Gateway

µService µService µService

DB DB DB

Tenants

(b)

API Gateway

µService

DB DB DB

Policy Engine

Gatekeeper

Modifier
µService
Modifier

µService
Modifier

Tenants

(c)

Fig. 1. Overview of application-level multi-tenancy (a) for both microservice applica-
tions (b) and applications with ThunQ (c). ThunQ’s components are shown in green.

to block unauthorized access to resources. Moreover, multi-tenant applications
require that both the application provider and tenants can specify these poli-
cies. In particular, the provider specifies the basic authorization policies for the
platform, while the tenants can provide additional policies that further restrict
access by their end-users to comply with internal authorization policies. For ex-
ample a tenant policy may state that: “An insurance company employee can only
view insurance documents of customers that are assigned to the employee.”

Supporting tenant specific policies requires an appropriate level of modular-
ity, separation of concerns and adaptation of the related software artefacts [8].
While single-tenant applications can embed the authorization logic directly in
the database query to enforce fine-grained access control, it is no longer feasi-
ble for multi-tenant applications with custom authorization policies per tenant.
Custom policies require a more flexible approach where policies can be updated
at run-time, as new tenants are continuously added to the application.

A frequently used architectural pattern to realize multi-tenant applications
are microservices [23]. Microservice applications often adopt the API gateway [32]
and the database-per-service [32] pattern as shown in Fig. 1b. The distribution of
application logic and data in multi-tenant microservice applications introduces
the following new challenges for access control in such applications:

1. Unauthorized requests should be denied as soon as possible (ASAP), such
that unauthorized resource usage and control flows in the distributed mi-
croservice application are minimized.

2. Sensitive data should stay in the context of its microservice during policy
evaluation, i.e. data from the data tier should not flow to the API gateway
when evaluating authorization policies.

3. The set of policies enforced on a single application request should be con-
sistent for the entire distributed control flow, as policies are no longer only
enforced at the facade API but throughout the entire application.

ThunQ: A Distributed Authorization Middleware 3

Existing work on application-level access control [15,18,20,29,34] and API
gateways [29,44,46] aims to enforce authorization policies ASAP, resulting in a
permit or deny. However, these solutions require that sensitive data is brought
outside of its microservice context. Other related work focuses on enforcing access
control in application databases [3,16,24]. These solutions aim to restrict access
by enforcing fine-grained authorization policies on the data records by either
rewriting the original database query [3], defining authorization views [24] or by
filtering database records after retrieving them from the database [16]. However,
securing database access is only a part of the challenges to enforce a consistent
set of authorization policies over a large number of microservices.

To address the challenges and shortcomings above, we present ThunQ, a
distributed authorization middleware for multi-tenant microservice applications
designed to efficiently and consistently enforce a set of authorization policies on
distributed application services and data. ThunQ enforces authorization policies
early in the distributed control flow, as well as deep down in the data tier.
ThunQ achieves this by adding the gatekeeper, policy engine and query modifier
components to the generic microservice architecture as shown in Fig. 1c. The
gatekeeper and policy engine use partial policy evaluation [26] to create thunks
that are piggybacked on the application request. The thunks are then used by
the query modifier to enforce authorization policies deep in the data tier.

We implemented and open-sourced ThunQ [45] as a set of reusable com-
ponents for the Spring Cloud and Data ecosystem. Our evaluation shows that
ThunQ performs notably better than state-of-practice postfiltering approaches.
Moreover, ThunQ’s overhead is largely independent of the number of application
tenants and the complexity of the tenant specific policies.

The remainder of this text is structured as follows. Section 2 presents the
motivational use case and provides the reader with background on access control
and ThunQ’s supporting technologies. Section 3 presents the architecture and
the security model of the ThunQ middleware. Section 4 discusses the evaluation
and results. Section 5 discusses related work and Section 6 concludes this work.

2 Motivational Use Case and Background

This section presents the motivation and background for ThunQ. We start with
presenting e-insurance, an anonymized industrial case study of a multi-tenant
insurance brokering platform with a microservice architecture and API-based
online service offering. Next, we discuss background on access control models
and ThunQ’s enabling technologies.

The E-Insurance Case Study. In the financial industry, insurance companies or
insurers do not always sell their insurance products directly to end customers.
Instead, they employ intermediaries, called insurance brokers, to bring their
products to the customer. Brokers negotiate insurance contracts with the cus-
tomers and take care of the paperwork related to the contract. Furthermore,
customers should have access to information regarding their insurance products,

4 M. Sauwens et al.

Insurance Customer

Insurance Broker
Search

eInsurance

Insurance Company

Search

Broker of
Tenant of

Tenant of

Broker for

Insured by

User ofStorage

Protection

Upload
Search

Fig. 2. Participants of the e-insurance application.

such as the current balance of their life insurance account. As shown in Fig. 2,
e-insurance integrates insurers, brokers, and customers into a single platform
that shares their insurance documents. E-insurance is responsible for storing the
insurance contracts and their related documents, as well as offering advanced
search operations on stored documents. However, as the contents of the insur-
ance documents are sensitive, the results of the search operations should only
include the information which the user is authorized to view.

Access Control Analysis. Ensuring the confidentiality of the insurance doc-
uments is the primary security goal of e-insurance. To achieve confidentiality,
e-insurance must restrict access to only those users who are authorized to access
a given document. Whether or not a user is authorized to access a document
is determined by authorization policies. E-insurance defines two sets of policies:
platform policies which are specified by e-insurance itself, and tenant policies,
which are specified by the tenants to further restrict access by their end-users.
Next, we provide a sample of possible policies.

P1. (platform) Brokers can only view documents assigned to them.
P2. (platform) Customers can only view documents that belong to them.
P3. (broker) Only senior employees can view documents worth over $100k.
P4. (insurer) Employees can only view the documents assigned to them.
P5. (insurer) Employees can only view documents during working hours.

Challenges. Given the discussion above, we can identify the following chal-
lenges for e-insurance. First, the application must guarantee the confidentiality
of insurance documents by enforcing both platform and tenant policies. Second,
e-insurance must offer the performance necessary to support numerous tenants
and documents. Searching documents should be fast even as the number of ten-
ants and documents increases. Finally, the set of policies applied to a single
application request should be consistent for the entire distributed control flow.

Background. Access control models are models that determine which subjects,
such as users and processes, are authorized to access a given object, such as
files and other resources. The choice of access control model has a significant
impact on the kind of authorization policies that can be expressed. Examples of
access control models include Lattice Based Access Control [27] and Role Based
Access Control [28]. We focus on Attribute-Based Access Control (ABAC) [12]

ThunQ: A Distributed Authorization Middleware 5

in combination with Policy-Based Access Control (PBAC) [25]. ABAC models
access rights by assigning attributes to the subjects and objects. ABAC makes
authorization decisions dynamically, based on the assigned attributes and the
environment, such as location and time. PBAC, on the other hand, makes de-
cisions based on authorization policies. These policies are evaluated by a policy
engine that uses an access control model, such as the attributes and context
assigned by the ABAC model, to reach an authorization decision.

The separation of concerns between authorization policies and the mechanism
to enforce them is a key principle in secure software engineering [8]. PBAC [25]
decouples policy from mechanism by using policy engines to evaluate policies
written in authorization policy languages. The Open Policy Agent (OPA) [41] is
a policy engine that supports the Rego [40] policy language for writing policies.
Rego policies use the attributes provided by the authorization request, as well
as the access control model stored by OPA. OPA supports both full and partial
evaluation [26] of authorization policies. Partial evaluation reduces a given policy
by substituting the known variables in the policy and evaluating the involved
expressions. The result of a partial evaluation is a reduced version of the original
policy that only contains unknown variables. We further refer to the reduced
version of the policy as the residual policy.

The OASIS eXtensible Access Control Markup Language (XACML) [18] is
an industry standard for access control. XACML provides a specification for
the XACML policy language and a reference architecture for authorization sys-
tems. XACML combines PBAC and ABAC, using XML documents to specify
authorization policies. The XACML reference architecture contains the following
components: (i) a Policy Enforcement Point (PEP), which intercepts incoming
application requests, (ii) a Policy Administration Point (PAP), that manages
the system’s policies, (iii) a Policy Information Point (PIP), that stores the ac-
cess control attributes, and (iv) a Policy Decision Point (PDP), which takes
authorization decisions based on the context provided by the PAP and PIP.

3 ThunQ Middleware

This section presents ThunQ, a distributed authorization middleware for multi-
tenant microservice applications. ThunQ is designed to efficiently enforce a con-
sistent set of authorization policies on distributed application services and data.
ThunQ combines partial policy evaluation [26] and query rewriting [2,3] to en-
force authorization policies both early and lazily. Early enforcement denies unau-
thorized requests as soon as possible, while lazy enforcement pushes access deci-
sions further down the distributed control flow. Next, we define ThunQ’s security
model, followed by a description of the architecture and its key elements.

Security Model. Fig. 1b depicts the system model for applications supported
by ThunQ. ThunQ assumes that all application requests pass through an API
gateway [32], which is a facade for the services in the business tier. Microservices
in the business tier execute the actual business logic of the application and can

6 M. Sauwens et al.

call other microservices. Additionally, the services in the business tier rely on the
databases in the data tier for persistence. ThunQ supports dedicated databases
per service, as well as a single database that is shared between microservices.
Given this system model, ThunQ makes the following trust assumptions.

A1 All services shown in Fig. 1b are trusted and operate correctly.
A2 Policies defined by the platform’s security administrators are correct, mean-
ing that they enforce the intended security policies.
A3 Tenant policies do not impact existing security properties of the system, i.e.
policies are defined by the provider’s security consultant after a requirements
analysis of the tenant.
A4 Security administrators are trusted, i.e. there is no insider threat caused by
the security staff.

The primary security goal of ThunQ is to restrict access to the distributed ap-
plication logic and data by enforcing platform and tenant policies. First, ThunQ
should deny unauthorized requests as soon as possible. Second, ThunQ should
enable the confidentiality of application data by enforcing the authorization poli-
cies on individual data records deep in the data tier. ThunQ only achieves these
goals when the following assumptions about the attacker hold.

A5 An attacker can only interact with the system through the APIs provided
by the platform.
A6 An attacker cannot impersonate any other user.
A7 The attacker has no access to side-channels in the communication between
the system and the attacker.

ThunQ’s Overall Architecture. The authorization architecture of ThunQ is shown
in Fig. 3. ThunQ adds the following components to realize its security goals.
First, ThunQ adds the gatekeeper to the API gateway. The gatekeeper per-
forms authorization checks and piggybacks the thunks on the application request.
Second, ThunQ transparently adds a query modifier to the microservices. The
modifier intercepts database queries from the application and rewrites them to
enforce authorization policies. Next, we discuss the application request flow with
distributed policy evaluation, followed by ThunQ’s core architectural elements.

Distributed Policy Evaluation. Policy evaluation in ThunQ is distributed, early
and lazy. Evaluation is distributed, as ThunQ evaluates policies at different
points in the microservice application, early, as unauthorized requests are denied
ASAP by partial evaluation, and lazy, as ThunQ postpones access decisions by
piggybacking the residual policies to the appropriate data context. More specif-
ically, policy evaluation in ThunQ starts at the API gateway where incoming
application requests are intercepted by the gatekeeper (1). The gatekeeper then
inspects the request and extracts any information regarding the subject. Next,
the gatekeeper selects the policies applicable to the request and calls the policy
engine with the subject information and the selected policies as arguments (2).
The policy engine then partially evaluates the policies and returns the residual

ThunQ: A Distributed Authorization Middleware 7

API Gateway µService 1

Policy Engine

Gatekeeper Query Modifier

DB

DB
µService 2

Query Modifier

µService N

Query Modifier DB
1 2 3 4.1 5.1 6.1

7.N

4.N

7.2

5.N

6.N

6.2

5.2

4.2
7.18

Fig. 3. Authorization architecture. ThunQ’s components are shown in green.

API Gateway

Gatekeeper

Fi
lte

r 1

Policy Engine

Partial
Evaluation

PEP RTP

Fi
lte

r N

µService

Application

ORM Middleware
DB Drivers

Data Model

Query Modifier

DB

(a) Components

Data Model ORM Modifier

QMM

DB

1
2

3
4

5

6

(b) Query execution flow

Fig. 4. Detailed view of ThunQ’s interactions with the application components.

policies to the gatekeeper (3). The gatekeeper transforms the residual policies
into a thunk and attaches the thunk to the application request. Alternatively,
the policy engine returns a deny, in which case the gateway blocks the request.

Next, the API gateway forwards the request to the relevant microservice
(4.1). The microservice then handles the request either by querying the database
(5.1 - 6.1) or by calling other microservices and piggybacking the thunk (4.x -
7.x). Each query made by the application gets intercepted by the query modifier,
where the query gets rewritten to enforce the authorization policies before being
passed to the database (5.1). The result of the rewritten query is then sent back
to the application (6.1). After the data is retrieved, the application can perform
other operations, eventually finishing the request and replying to the caller (7.1).
Eventually, the API gateway receives the response and forwards it to the client
(8). Note that the same rewriting procedure (5.x - 6.x) is applied when the
service calls other microservices to handle the request.

We next discuss the core architectural elements of the ThunQ middleware.
The ThunQ middleware consists of two main components the gatekeeper and the
query modifier. These components and a policy engine are added transparently
to the microservice application as shown in Fig. 4.

Gatekeeper. The gatekeeper enforces the authorization policies on the requests
both early and lazily. As depicted in Fig. 4a, the gatekeeper is attached to the

8 M. Sauwens et al.

1 allow {
2 user.tenant ==" insurer"
3 doc.tenant_id ==user.tenant_id
4 user.role ==" account_manager"
5 doc.employee_id ==user.id
6 }

allow {
doc.tenant_id ==67
doc.employee_id ==42

}

Fig. 5. Example policy (left) and the residual policy after partial evaluation (right).

API gateway as a filter component that intercepts all incoming application re-
quests. The gatekeeper can be further broken down into the Policy Enforcement
Point or PEP, and the Request Transformation Point or RTP. The PEP is a
modified version of a XACML PEP [18] and is responsible for sending requests
for partial policy evaluation to the policy engine. The policy engine responds
with either a set of residual policies or a deny. In the case of a deny, the PEP
blocks the application request, denying the request early. Alternatively, the pol-
icy engine responds with a residual policy, in which case the PEP sends the
residual policies to the RTP, which transforms the residual policies into Boolean
expressions and adds the expressions to the thunk. The RTP is a new component
in the XACML dataflow that is responsible for augmenting application requests,
in particular by attaching a thunk for lazy enforcement.

Fig. 5 shows an example of partial policy evaluation at the gateway. The
policy consists of rules which are defined by the provider at lines 2 and 3, as well
as by the tenant at lines 4 and 5. Note that all subject attributes are available
at the gateway such that lines 2 and 4 can be evaluated and, if necessary, denied
early. This while lines 3 and 5 must be evaluated lazily in the data tier, as the
attributes of doc are not accessible from the current evaluation context.

We realized ThunQ’s gatekeeper as a gateway filter instance for Spring Cloud
Gateway [44]. The gateway filter is implemented as a stateless instance to mini-
mize ThunQ’s memory footprint. However, the concept of the gatekeeper is more
general and is not limited to this specific software implementation. The policy
engine is provided by Open Policy Agent (OPA) [41], as it supports partial pol-
icy evaluation. OPA can be deployed as either a standalone service or a sidecar
of the API gateway, depending on its memory consumption. For e-insurance we
deployed OPA as a stateless sidecar, as memory use was limited to 10 MiB.

Thunks. A thunk is the key data structure that enables lazy and consistent policy
evaluation in a distributed control flow. Thunks are created by the RTP which
transforms the residual policies forwarded by the PEP into Boolean expressions.
These expressions are added to a thunk by the RTP and piggybacked on the
request. By piggybacking the thunks, the residual policies are able to travel
together with distributed control flow, where they can be used by other ThunQ
components to enforce fine-grained authorization policies deep in the data tier.
As shown in Fig. 6, a thunk is a collection of URL path selectors mapped to a
Boolean expression. The selectors are used by the query modifier to determine
which residual policies are relevant for the intercepted database query. To ensure

ThunQ: A Distributed Authorization Middleware 9

{
"/ accountStates /*":" doc.tenant_id =67 && doc.employee_id =42",
"/ hospitalBills /*": <BoolExpr#2>,
"/*": <BoolExpr#3>

}

Fig. 6. Example of a thunk encoding the partial policy of Fig. 5 and others.

SELECT *
FROM account_states

SELECT *
FROM account_states
WHERE tenant_id =67 AND employee_id =42

AND <BoolExpr#3>

Fig. 7. Example of query rewriting by the query modifier. The original query on the
left is rewritten using the thunk in Fig. 6 with /accountStates/all as request path.

loose coupling, thunks are forwarded in their entirety between microservices.
Note that each application request is processed with a consistent set of policies,
as the same thunk is re-used for the entire the distributed control flow.

Query Modifier. The query modifier rewrites database queries such that the
queries enforce authorization policies on individual data records. Note that the
query modifier only augments search queries since these operate on large result
sets. As shown in Fig. 4a, the query modifier is attached to the application as a
plugin for the Object Relational Mapper(ORM) middleware. ORMs often provide
hooks that enable third-party extensions to modify database queries through the
query meta-model (QMM).

To rewrite queries, the query modifier must first determine the relevant resid-
ual policies to enforce. These policies are encoded as Boolean expressions in the
thunks that are piggybacked on the application requests. The relevant Boolean
expressions are selected by matching the URL path selectors of the thunk against
the application request path. The matching expressions are then joined using a
conjunction to create a Boolean expression that encodes all the matched resid-
ual policies at once. This expression is then woven into the meta-model of the
database query by adding the expression to the predicate of the query’s model.
The modified query then gets further processed by the ORM middleware be-
fore it is sent to the database. The result of the query then is sent back to the
ORM without passing through the modifier. An example of the effect of query
rewriting on a SQL query is illustrated in Fig. 7.

Fig. 4b shows the flow of a database query in detail. First, the application
invokes a search method on the data model (1). Next, the data model contacts
the ORM middleware (2) which creates a query meta-model that corresponds
to the method call (3). This meta-model is an internal representation of the
query that the ORM will map later to a database specific query. Next, the
ORM passes the meta-model to the query modifier (4), which rewrites the query
as described earlier using the meta-model (5). After calling the modifier, the
ORM instantiates the actual database query using the modified meta-model (6)

10 M. Sauwens et al.

and returns the result back to the data model. ThunQ’s query modifier was
realized as a component for the Spring Data [43] ORM middleware. The query
modifier utilizes the Querydsl [35] query meta-model to rewrite database queries.
Furthermore, the query modifier is implemented as a stateless component to
minimize ThunQ’s memory footprint.

4 Evaluation

This section discusses the evaluation of the ThunQ middleware with a key focus
on the performance overhead of the middleware solution. We compare ThunQ
against two alternative approaches for fine-grained authorization in the data tier,
namely postfiltering [16] and hand-crafted queries. Postfiltering enforces autho-
rization policies on data queries by checking each record in the result set against
a policy engine. Hand-crafted queries, on the other hand, encode the autho-
rization policies directly in the application queries. Although the last approach
is impractical for multi-tenant applications, it represents the best-case scenario
for query-based approaches to enforce fine-grained authorization, as it doesn’t
have the overhead of ThunQ’s middleware components. The evaluation aims to
answer the following questions related to multi-tenancy and performance.

Q1 What is the impact of the properties of the enforced policies on the latency?
As tenants specify policies that further restrict access by their end-users, it
decreases the number of records included in the results. Also, adding policies
can increase the number of attributes required for evaluation.
Q2 What is the impact on end-to-end latency when the number of tenants
grows? As microservice applications are very sensitive to increases in latency,
the overhead of ThunQ should not put limitations on the number of tenants.

Evaluation Setup. All experiments were performed on a proof-of-concept appli-
cation (PoC) that is based on the e-insurance case study discussed in Section 2.
The PoC was deployed in an AKS Kubernetes cluster in the Microsoft Azure
public cloud. The Kubernetes control plane was hosted on a single Standard B2s
VM with 2 CPUs and 4GiB of memory, while the PoC runs inside a node pool
consisting of 3 Standard D4as v4 VMs with 4 CPUs and 16GiB of memory. To
simulate application users, we used the Locust [6] load generation tool.

The PoC consists of the following services: an API gateway, an account-
state service, a datastore, and an IAM system. The API gateway is an instance
of Spring Cloud Gateway [44] with an additional gatekeeper filter as discussed
in Section 3. The account-state service handles statements of account balances
generated by life insurances. The service is realized a Spring Boot [42] application
augmented with the query modifier from Section 3. Furthermore, the datastore
is an instance of Azure SQL and the IAM system is provided by Keycloak [39].

Q1. We first investigate the impact of two policy properties called policy selec-
tivity and attribute count. Policy selectivity is the ratio between the number of

ThunQ: A Distributed Authorization Middleware 11

0.2

0.4

0.6

0

0.8 s
Latency ↑ 63 s ↑ 4.4 s

0.01 0.1 1 10 100%
Selectivity

ThunQ Postfilter Hand-crafted

(a) Average end-to-end latency

Selectivity

0.01

0.1

1

10

100

25 50 750 100%
Contribution to latency

OPA Service
Routing Query

(b) Breakdown of ThunQ latency

Fig. 8. Latency in function of policy selectivity.

data records still included after applying the policy to the result set and the
size of the original result set. Policies with low values for selectivity are called
narrow , as only a small portion of the original result set is included. Policies
with high selectivity values are called broad as more records remain included.
The attribute count of a policy, on the other hand, defines how many attributes
are required by a policy for lazy evaluation.

We configured the experiments as follows. Clients send requests through the
API gateway to fetch data from the account-state service, which has a database
with 1 million records. Application requests are paginated and retrieve only the
first 50 accessible records that satisfy the authorization policies. The policies in
both scenarios were synthetically generated to show the impact of the different
policy properties. The policies for the experiments with varying policy selectivity
only have a single attribute, while the experiments with varying attribute count
have policies with a selectivity of 10%.

Impact of Policy Selectivity. Fig. 8a shows the impact of policy selectivity
on the end-to-end latency. For ThunQ and hand-crafted queries, latencies are
largely unaffected by policy selectivity, with only a minor increase for very narrow
policies. In addition, the breakdown of the ThunQ’s request latency shown in
Fig. 8b, indicates that ThunQ’s latency is dominated by the database query. The
results for postfiltering show low latencies for policies with selectivity between 10
and 100%. This is a consequence of paged requests, as filling a page requires that
only a limited number of records have to be checked against the policy engine. In
contrast, narrow policies have high latencies. The decrease in selectivity means
that more database records need to be checked by the policy engine before a
single page can be filled, in turn increasing the overhead of the postfilter and
the overall latency. A final observation concerns the results for policies with
a selectivity of 100%. In this case, postfiltering outperforms both ThunQ and
hand-crafted queries. This is caused by the way Spring Data handles request
paging for ThunQ and hand-crafted queries.

12 M. Sauwens et al.

0.2

0.4

0.6

0

0.8 s
Latency

1 5 15 25

Attributes

ThunQ Postfilter Hand-crafted

(a) Average end-to-end latency

Attributes

1

5

15

25

25 50 750 100%
Contribution to latency

OPA Service
Routing Query

(b) Breakdown of ThunQ latency

Fig. 9. Latency in function of policy attribute count.

0.2

0.4

0.6

0

0.8 s
Latency ↑ 4 s ↑ 46 s

1 10 100 1000

Tenants

ThunQ Postfilter Hand-crafted

(a) Average end-to-end latency

Tenants

1

10

100

1000

25 50 750 100%
Contribution to latency

OPA Service
Routing Query

(b) Breakdown of ThunQ latency

Fig. 10. Latency in function of the number of tenants.

Impact of Attribute Count. Fig. 9 shows the relation between the number
of attributes used in the lazy evaluation of a policy and the end-to-end request
latency for policies with a 10% selectivity. All three fine-grained authorization
methods show a linear increase in latency for higher attribute counts. Although
postfiltering initially performs worse than the other techniques, its slope is less
steep compared to ThunQ or hand-crafted queries. Consequently it matches or
outperforms the other solutions for higher attribute counts. The steeper slope
for both ThunQ and hand-crafted queries can be explained by a combination
of the extra work required to check extra attributes in the query and request
pagination in Spring Data, which generates extra count queries.

Q2. Next, we investigate the impact of the number of tenants on the end-to-end
latency. We increased the number of tenants by adding brokers that are each
assigned 1000 documents. We also enforced the policy that“A broker can only
view the documents that are assigned to the broker”. Adding new brokers impacts
two dimensions of the system. First, The size of the database increases, as each
broker is assigned a fixed number of records. Second, the authorization policy
becomes narrower, as the ratio between the records that the broker is authorized

ThunQ: A Distributed Authorization Middleware 13

to view and the total number of records decreases. As before, application requests
are paged with 50 records per page.

Fig. 10a shows the impact of the number of brokers in the system on the end-
to-end latency. ThunQ closely follows the performance of hand-crafted queries,
with the latency of both techniques increasing for a larger number of tenants. As
shown earlier in Q1, policy selectivity only has a limited impact on the latency
of either fine-grained authorization systems. This implies that the increase in
latency can mostly be attributed to the increase in database size. The latency of
the postfilter increases sharply once the system exceeds 10 tenants. This increase
is mostly likely caused by the increase in policy selectivity. The behavior of the
postfilter in Fig. 8a confirms this observation. The performance breakdown of
ThunQ’s end-to-end latency in Fig. 10b shows that the end-to-end latency is
dominated by the database operations of the account-state service. This implies
that relative overhead of ThunQ decreases as the number of tenants increases,
which makes ThunQ better suited to protect applications with larger databases.

Discussion. Our results indicate that the impact of policy selectivity, attribute
count, and the number of tenants on the performance of ThunQ is similar to
the impact of these parameters on the performance of hand-crafted queries.
However, postfiltering outperforms both approaches in scenarios where policies
are broad and have a high attribute count. Nonetheless, ThunQ exhibits better
performance characteristics for multi-tenant applications, such as e-insurance,
that have to support numerous tenants with narrow policies, while still offering
the flexibility required by policy customization. We did not consider the use of
database indexes which might greatly enhance ThunQ’s performance.

As discussed in Section 3, thunks are forwarded in their entirety between mi-
croservices to ensure loose coupling. Although this approach can cause thunks
to contain policies that are not required by downstream services, we can assume
that this overhead is relatively small for two reasons. First, thunks are composed
of residual policies, which often reduces the size of the thunks. Second, general-
izing our evaluation results, we can assume that the cost of query execution will
be the dominant source of overhead in most target systems.

5 Related Work

This section first presents work related to access control for databases, followed
by a discussion of security techniques for microservice applications.

Access Control for Databases. Enforcing access control at the level of database
records is a non trivial problem. Next, we provide an overview of some techniques
proposed by literature for fine-grained access control in database systems.

FGAC [24] enforces authorization policies on individual database records by
defining a set of authorization views that restrict access to the database. Au-
thorization views scale well to large result sets, but they break separation of
concerns between security administration and application development, as au-
thorization views are defined in the database’s native query language. Moreover,

14 M. Sauwens et al.

FGAC scales poorly in terms of administrative overhead. FGAC represents each
subject by a separate database user, which not only causes significant admin-
istrative overhead but is also problematic for multi-tenant applications, which
often integrate with the IAM systems of their tenants.

Bouncer [16] aims to scale fine-grained access control with respect to large
groups of users. It does so by inserting an enforcement point between the database
and the application The enforcement point first performs an authorization check
when a query arrives at the database. The result set of this query is then passed
back to Bouncer, which uses a postfilter to exclude any unauthorized records.
However, postfiltering does not scale well for large result sets [3].

Sequoia [3] combines the strengths of FGAC and Bouncer by rewriting data-
base queries based on XACML policies. This approach results in low latency
enforcement of expressive policies, even in systems with a large number of users.
However, Sequoia does not provide an end-to-end solution for access control in
applications with distributed application logic and data, such as multi-tenant
microservice applications. Moreover, Sequoia instances receive policy updates
individually, such that there are no guarantees that multiple Sequoia instances
enforce a consistent set of policies on a single distributed control flow.

Securing Microservices. Securing microservice applications [11,19] is challenging,
and it requires a holistic approach at different layers of the software stack for in-
depth defense. Next, we discuss some security techniques which are put forward
by literature to secure microservice applications.

Access control ensures that only authorized entities can interact with the
protected system. Most solutions for application-level access control [9,15,20,29]
either enforce policies within a single application domain [9,29] or in a setting
with multiple parties [15,20]. To ensure interoperability, most solutions use stan-
dardized technologies, such as OAuth [15,29], UMA [20] and XACML [15]. The
aforementioned systems enforce access control on the level of application re-
quests, while ThunQ also enforces fine-grained policies at the data-record level.

Access control can also be enforced at the network level [21,31,37], either by
leveraging Software Defined Networks (SDNs) [31], application containers [37],
or a combination of both SDNs and the Host Identity Protocol (HIP) [21].

Managing authorization policies in microservice is challenging due to the
multitude of services and the complexity of their interactions. One solution is to
mine policies from historical application data [36] and install them at the appli-
cation services. AutoArmor [14] offers a more holistic approach, as it extracts
policies from the microservice code and keeps the policies up-to-date.

Application-level access control, such as ABAC, can leak sensitive informa-
tion about its users. TSAP [38] is a system that is designed to protect the users’
attributes by assigning attribute sensitivity and resource server trust levels.

Monitoring and Anomaly Detection aims to completely mediate and monitor
application requests [31]. Recent work leverages anomaly detection to detect
suspicious behavior through microservice RPC calls [7] or circumvent attacks
against auto-scaling infrastructure by identifying cyclic patterns in application
load [22].

ThunQ: A Distributed Authorization Middleware 15

Deception techniques aim to confuse attackers by setting up decoys and traps
in the microservice application. Sandnet [17] leverages SDNs and CRIU (Check-
point/Restore In Userspace) to create a sandboxed environment for suspicious
application containers that are possibly compromised by an attacker.

Moving Target Defense (MTD) targets to reduce an attack’s economy of scale
by introducing variation in the microservice application. The challenge of MTD
is selecting the appropriate variation technique to increase the resiliency of the
application in a trade-off between security and performance. Recent work pro-
poses to use vulnerability rating systems such as ORRM (OWASP Risk Rating
Methodology) and CVSS (Common Vulnerability Scoring System) to select the
appropriate variations [33]. Alternatively, MTD can use custom metrics such as
betweenness centrality [13] to choose the most suitable variation technique.

A Trusted Execution Environment (TEE), such as Intel Secure Guard Exten-
sions (SGX), is another technique to protect microservice applications. Squad [30]
leverages TEEs for the secure delivery of application secrets and critical system
configuration parameters. Vert.x Vault [4] extends the Eclipse Vert.x framework
for microservices with secure application components that protect specific parts
of the application using TEEs.

Integrity Protection aims to protect the integrity of artifacts and configura-
tion of microservice applications from insider threats. Protecting the integrity
of these systems often requires a combination of security techniques, such as re-
mote attestation, access control, and audit [1]. Integrity protection can be used
to ensure part of ThunQ’s trust requirements presented in Section 3.

The discussion above highlights some of the techniques available for securing
microservices. Even though ThunQ is able to efficiently enforce access control,
it should be used in tandem with other security techniques.

6 Conclusion and Future Work

This work presented ThunQ, a distributed authorization middleware for multi-
tenant microservice applications. ThunQ ensures data confidentiality by denying
unauthorized requests as soon as possible and enforcing authorization policies
lazily. ThunQ uses partial policy evaluation to make authorization decisions early
at the API gateway and piggybacks the resulting residual policies as a thunk on
the application request. This scheme moves the policies close to the data that
is required to evaluate them, keeping the sensitive records within their local
microservice context.

Our evaluation shows that ThunQ’s performance is suitable to support large-
scale multi-tenant microservice applications. ThunQ has limited overhead and
performs better than postfiltering at large scales. Moreover, ThunQ’s perfor-
mance is comparable to the baseline hand-crafted implementation.

As a part of future work, we want to support authorization policies that use
data from multiple data-sources for policy evaluation, for example by means of
the Command Query Responsibility Segregation [23] pattern for microservices.
Another effort can be focused on supporting obligations and HBAC policies [5].

16 M. Sauwens et al.

Acknowledgement. We would like to thank the R&D team from Xenit Solu-
tions NV and Paul C. Warren for their insightful discussions and contribution
to the prototype.

References

1. Ahmadvand, M., Pretschner, A., Ball, K., Eyring, D.: Integrity protection against
insiders in microservice-based infrastructures: From threats to a security frame-
work. In: STAF. Springer (2018)

2. Bertino, E., Sandhu, R.: Database security-concepts, approaches, and challenges.
IEEE TDSC 2(1) (2005)

3. Bogaerts, J., Lagaisse, B., Joosen, W.: Sequoia: A middleware supporting policy-
based access control for search and aggregation in data-driven applications. IEEE
TDSC 18(1) (2021)

4. Brenner, S., Hundt, T., Mazzeo, G., Kapitza, R.: Secure cloud micro services using
intel sgx. In: DIAS. Springer (2017)

5. Brewer, D., Nash, M.: The chinese wall security policy. In: Proc. IEEE S&P 1989
(1989)

6. Bystr, C., Heyman, J., Hamrén, J., Heyman, H., Holmberg, L.: Locust. https:

//locust.io/

7. Chen, J., Huang, H., Chen, H.: Informer: Irregular traffic detection for container-
ized microservices rpc in the real world. In: Proc. SEC’19. ACM (2019)

8. De Win, B., Piessens, F., Joosen, W., Verhanneman, T.: On the importance of
the separation-of-concerns principle in secure software engineering. In: ACSAC -
WAEPSSD (2003)

9. Faravelon, A., Chollet, S., Verdier, C., Front, A.: Configuring private data manage-
ment as access restrictions: From design to enforcement. In: ICSOC 2012. Springer
(2012)

10. Guo, C.J., Sun, W., Huang, Y., Wang, Z.H., Gao, B.: A framework for native
multi-tenancy application development and management. In: CEC-EEE (2007)

11. Hannousse, A., Yahiouche, S.: Securing microservices and microservice architec-
tures: A systematic mapping study. Comput. Sci. Rev. 41 (2021)

12. Hu, V., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin, K., Miller, R., Scarfone,
K.: Guide to attribute based access control (abac) definition and consideration.
Tech. rep., NIST (2014)

13. Jin, H., Li, Z., Zou, D., Yuan, B.: Dseom: A framework for dynamic security evalu-
ation and optimization of mtd in container-based cloud. IEEE TDSC 18(3) (2021)

14. Li, X., Chen, Y., Lin, Z., Wang, X., Chen, J.H.: Automatic policy generation for
inter-service access control of microservices. In: USENIX Security 21. USENIX
Association (2021)

15. Nehme, A., Jesus, V., Mahbub, K., Abdallah, A.: Fine-grained access control for
microservices. In: FPS. Springer (2019)

16. Opyrchal, L., Cooper, J., Poyar, R., Lenahan, B., Daniel, Z.: Bouncer: Policy-based
fine grained access control in large databases. IJSIA 5(2) (2011)

17. Osman, A., Bruckner, P., Salah, H., Fitzek, F.H.P., Strufe, T., Fischer, M.: Sand-
net: Towards high quality of deception in container-based microservice architec-
tures. In: IEEE ICC (2019)

18. Parducci, B., Lockhart, H.: extensible access control markup language (xacml)
version 3.0. Standard, OASIS (2013)

https://locust.io/
https://locust.io/

ThunQ: A Distributed Authorization Middleware 17

19. Pereira-Vale, A., Fernandez, E.B., Monge, R., Astudillo, H., Márquez, G.: Security
in microservice-based systems: A multivocal literature review. Comput. Secur. 103
(2021)

20. Preuveneers, D., Joosen, W.: Towards multi-party policy-based access control in
federations of cloud and edge microservices. In: IEEE Euro S&PW (2019)

21. Ranjbar, A., Komu, M., Salmela, P., Aura, T.: Synaptic: Secure and persistent
connectivity for containers. In: IEEE/ACM CCGRID (2017)

22. Ravichandiran, R., Bannazadeh, H., Leon-Garcia, A.: Anomaly detection using
resource behaviour analysis for autoscaling systems. In: NetSoft and Workshops
(2018)

23. Richardson, C.: Microservices Patterns. Manning Publications Co. (2018)
24. Rizvi, S., Mendelzon, A., Sudarshan, S., Roy, P.: Extending query rewriting tech-

niques for fine-grained access control. In: Proc. SIGMOD ’04. ACM (2004)
25. Samarati, P., de Vimercati, S.C.: Access control: Policies, models, and mechanisms.

In: FOSAD. Springer (2001)
26. Sandall, T.: Partial evaluation, https://blog.openpolicyagent.org/

partial-evaluation-162750eaf422

27. Sandhu, R.S.: Lattice-based access control models. Computer 26(11) (1993)
28. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-

trol models. Computer 29(2) (1996)
29. ShuLin, Y., JiePing, H.: Research on unified authentication and authorization in

microservice architecture. In: IEEE ICCT (2020)
30. da Silva, M.S.L., de Oliveira Silva, F.F., Brito, A.: Squad: A secure, simple storage

service for sgx-based microservices. In: LADC (2019)
31. Sun, Y., Nanda, S., Jaeger, T.: Security-as-a-service for microservices-based cloud

applications. In: IEEE CloudCom (2015)
32. Taibi, T., Lenarduzzi, V., Pahl, C.: Architectural patterns for microservices: A

systematic mapping study. In: Proc. CLOSER. SciTePress (2018)
33. Torkura, K.A., Sukmana, M.I., Kayem, A.V., Cheng, F., Meinel, C.: A cyber risk

based moving target defense mechanism for microservice architectures. In: IEEE
BDCloud (2018)

34. Verhanneman, T., Piessens, F., De Win, B., Joosen, W.: Uniform application-level
access control enforcement of organizationwide policies. In: ACSAC ’05 (2005)

35. Westkämper, T., Dijkstra, R., Tims, J., Bain, R.: Querydsl. http://www.

querydsl.com/

36. Xu, Z., Stoller, S.D.: Mining attribute-based access control policies. IEEE TDSC
12(5) (2015)

37. Zaheer, Z., Chang, H., Mukherjee, S., Van der Merwe, J.: Eztrust: Network-
independent zero-trust perimeterization for microservices. In: Proc. SOSR’19.
ACM (2019)

38. Zhang, G., Liu, J., Liu, J.: Protecting sensitive attributes in attribute based access
control. In: ICSOC 2012 Workshops. Springer (2013)

39. Keycloak. https://www.keycloak.org/
40. Rego. https://www.openpolicyagent.org/docs/latest/policy-language/
41. Open policy agent. https://www.openpolicyagent.org/
42. Spring boot. https://spring.io/projects/spring-boot
43. Spring data. https://spring.io/projects/spring-data
44. Spring cloud gateway. https://spring.io/projects/spring-cloud-gateway
45. Thunq. https://distrinet.cs.kuleuven.be/software/thunq
46. Zuul. https://github.com/Netflix/zuul

https://blog.openpolicyagent.org/partial-evaluation-162750eaf422
https://blog.openpolicyagent.org/partial-evaluation-162750eaf422
http://www.querydsl.com/
http://www.querydsl.com/
https://www.keycloak.org/
https://www.openpolicyagent.org/docs/latest/policy-language/
https://www.openpolicyagent.org/
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-data
https://spring.io/projects/spring-cloud-gateway
https://distrinet.cs.kuleuven.be/software/thunq
https://github.com/Netflix/zuul

	ThunQ: A Distributed and Deep Authorization Middleware for Early and Lazy Policy Enforcement in Microservice Applications

