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Abstract
SaaS application instances typically serve multiple tenants to im-
prove cost-efficiency. This results in the need for adaptive perfor-
mance isolation between tenants in order to guarantee custom
service level objectives (SLOs) about request latency or throughput.
Current solutions, which are based on request scheduling algo-
rithms, suffer from SLO instability under globally varying work-
loads. This means that the configuration for an SLO has to be re-
calibrated when total workload patterns change such as an increase
or decrease in the number of subscribed tenants, or the applica-
tion becomes co-located with other types of resource-intensive
applications. Lately container technology such as Docker and con-
tainer orchestration frameworks like Kubernetes have been used
to increase cost-efficiency, multi-tenancy and elasticity. This paper
investigates if the problem of adaptive performance isolation can be
mapped to resource management concepts of Kubernetes through
a series of experiments. These experiments show that Kubernetes
provides good support for QoS differentiation and adaptive resource
allocation by grouping tenants according to their SLO class (e.g
gold vs bronze) in different containers. Moreover, SLO instabil-
ity does not occur when co-locating these containers with other
container-based applications provided that a few interferences be-
tween CPU-, memory- and disk-io intensive applications are taken
into account. However SLO instability does occur when the number
of subscribed tenants changes. This latter problem is not caused by
the replication and auto-scaling concepts of Kubernetes, but by a
non-linear resource scaling phenomenon that is inherent when the
goal is to meet multiple custom SLOs in a cost-optimal way.

CCS Concepts • Software and its engineering → Software
performance; Cloud computing; Software as a service orchestration
system.

Keywords Performance isolation, Multi-tenant SaaS, Container
orchestration frameworks
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1 Introduction
Application-level multi-tenancy is an architectural design principle
for Software-as-a-Service (SaaS) applications to enable the hosting
of tenants by a single application instance in order to reduce devel-
opment and operational costs for the SaaS provider [21]. Typically,
a service-level agreement (SLA), agreed upon between tenant and
SaaS provider, consists among others of service-level objectives
(SLOs) for performance and availability. While application-level
multi-tenancy is the most cost-efficient approach for implementing
multi-tenant architectures, it is also the most complex approach
to implement performance isolation between tenants with respect
to performance SLOs. Algorithms for scheduling requests from
different priority queues need to be designed and calibrated for the
application at hand. Adaptive performance isolation, in particular,
is especially hard to design because three different requirements
must be supported: (i) QoS differentiation between different SLA
classes of tenants, (ii) admission control of aggressive tenants and
(iii) dynamically adapting scheduling priorities among tenants to
utilize provisioned cloud resources as efficiently as possible [12].

Current solutions for this problem are usually based on request
scheduling with a tenant-aware control loop [17, 25]. The problem
with these solutions is that they are not stable because the con-
figuration for the same SLO needs to be adapted when there are
variations in the total workload context of the SaaS application [25].
These variations include subtle changes in the deployment context
of the local node with respect to other co-located resource-intensive
applications and slowly evolving changes in the total workload vol-
ume when the number of subscribed tenants evolves over time.
Thus, this affects the ability of SaaS applications to continuously
guarantee a performance SLO to their tenants, even if these tenants
respect their part of the SLO, i.e. keep their request rate under a
maximum allowed throughput as stipulated in the SLO.

Recently, there has been a strong industry adoption of Docker
containers due to their lower memory footprint and sufficient per-
formance isolation [27]. Container orchestration (CO) frameworks
such as Kubernetes [14] have also arisen that provide support for
automated container deployment, scaling and management.

Kubernetes is a popular open source framework for managing
containerized applications in a distributed environment, provid-
ing basic mechanisms for deployment, maintenance and scaling
of applications [14]. It offers several useful features for resource
management. A Pod in Kubernetes is the smallest deployable unit
of computing which can be created and managed [5]. Containers
belonging to the same application are grouped together in a Pod.
The resources used by a Pod can be limited, e.g., by setting its
so-called requests and limits. The request is the amount of re-
sources which it is guaranteed to get; the limit is the maximal
amount of resources it can obtain [7]. Another way of adjusting the
resources available to an application is to scale it. Kubernetes offers
default horizontal and vertical autoscalers, called the Horizontal
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Pod Autoscaler (HPA) and Vertical Pod Autoscaler (VPA) respec-
tively. However, a well-known disadvantage of the VPA is that it
currently requires to reschedule Pods when dynamically adjusting
requests or limits [4].

In this paper we study to which extent the above mentioned
features of Kubernetes can support adaptive performance isolation
so that the complexities of using a request scheduler approach
can be reduced and the desired property of SLO stability can be
improved. We study this problem for a synthetic SaaS application
benchmark that can be configured to be CPU-, memory and disk-
intensive.

The remainder of this paper is structured as follows. Section 2
presents the requirements related to application-level multi-tenancy
and adaptive performance isolation in particular. Then, Section 3
presents how the resource management concepts of Kubernetes
can be used to simplify the architecture of multi-tenant SaaS appli-
cations. Thereafter, Section 4 presents the performance evaluation
experiments to better understand the feasibility of Kubernetes to
support adaptive performance isolation with good support for SLO
stability. Section 5 discusses related work. Finally, Section 6 presents
our conclusions.

2 Multi-tenancy and adaptive performance
isolation

This section presents the main requirements of application-level
multi-tenancy and adaptive performance isolation [11, 21, 25].

A SaaS provider offers an application service (e.g. a document
archival service) to various organizations (e.g. a bank, a telecom
provider), which are called tenants of the SaaS provider. A tenant
and SaaS provider operate according to a service level agreement
(SLA), which defines a contract with specific service level objectives
(SLOs) about performance and availability. A performance SLO is
typically expressed as a contract with mutual rights and obligations:
if the tenant keeps below a maximum allowed request rate, the SaaS
provider is able to guarantee aminimum response latency expressed
in terms of percentiles between the range of 95-99th.

A multi-tenant SaaS application serves multiple tenants by a set
of shared application instances that run on a shared cluster of com-
puting and storage nodes, which are provisioned dynamically by a
cloud provider. The architectural principle of processing requests
of different tenants by the same application instance is called multi-
tenancy [21, 25]. Application-level multi-tenancy with support for
performance isolation maps then to the following requirements:
1. Customization: SaaS application instances are run-time customiz-
able to the preferences of different tenants. The management of
such tenant-specific preferences is automated as much as possible
with tenant self-service dashboards.
2. Operational cost-efficiency: The [service level/price cost] ratio de-
termines the competitiveness of the SaaS offering. Application-level
multi-tenancy is clearly the most cost-efficient approach because
a single application instance can be shared by multiple tenants,
which is not the case when running each tenant in a separate vir-
tual machine.
3. Adaptive performance isolation: To implement adaptive perfor-
mance isolation in the application-level multi-tenancy approach,
the following requirements must be satisfied:
3.1: Admission control: Aggressive tenants who violate the terms of
the service level agreement with the SaaS provider cannot impact

the service level delivered to abiding tenants. Admission control
can be implemented by means of a request scheduler based on
blacklisting [12].
3.2: QoS differentiation: Performance requirements can be cus-
tomized to the needs of individual tenants by managing custom
SLAs. QoS differentiation can be implemented by means of round
robin scheduling of tenant requests with different priorities [12].
3.3 Adaptive resource allocation for improved server consolidation:
Some SaaS providers additionally aim to dynamically minimize
the number of provisioned nodes in accordance with the actual
resource usage of tenants instead of the theoretical required node
capacity for guaranteeing all tenants’ SLOs.

3 Container-based architecture for SaaS
In this section, we introduce our vision how Kubernetes or con-
tainer orchestration frameworks can be used to support adaptive
performance isolation of multi-tenant web applications with a user-
facing, latency-sensitive workload. As web applications are con-
structed as a multi-tier architecture, we present a tier-based view
of the SaaS architecture and describe how the use of Kubernetes
impacts each tier. Figure 1 gives an overview of this impact and also
presents in green font how existing performance isolation middle-
ware can be simplified. Thereafter we describe how Kubernetes can
be used so that SaaS applications can provide support for all three
requirements of adaptive performance isolation simultaneously.

Figure 1. Impact on existing multi-tenant SaaS architecture when
using Kubernetes or another container orchestration framework

3.1 Database and web tier
At the database tier, application and configuration data is stored
according to a multi-tenant database scheme [9] where data of
different tenants is stored in the same database process or even
database entity (e.g., table, document, collection).

Configuration data of a tenant includes the desired features that
must be activated for that tenant, access control policies about
the tenant organization and the tenant’s SLA class (golden, silver,
bronze). These configurations can be managed by the tenant ad-
ministrator by means of a self-service tenant dashboard provided
by the Application management tier.
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The most common and preferred approach in the literature on
SLOs formulti-tenant database is to group tenants according to their
SLA class in separate database processes [15]. Moreover, in order
to implement performance isolation, request throttling is preferred
over running database processes in separate virtual machines, that
has been considered by the database community as not performing
well enough for high-end performance SLOs such as 1000 tps [15].
A relevant question is whether container technology, which is
considered as light-weight virtualization, is a possible alternative.

The web tier of every SaaS application is nowadays built on a
multi-tenancy middleware layer that transparently adds the ten-
ant ID to each user’s session and relies on a dependency injection
(D.I.) framework, such as Google’s Guice, to support tenant-specific
customizations on a per request basis [12, 21, 26]. Thus, each appli-
cation instance is able to process requests from any tenant and the
D.I framework uses the tenant ID to retrieve the configuration data
of that tenant from the database.

It is possible deploy the existing code of data and web tiers “as-is”
into containers using Kubernetes. Database and web service net-
work endpoints can be exposed via a stable service IP address and a
stable DNS names by relying on the Service concept of Kubernetes.
The web tier needs to be configured with the correct DNS name(s)
for retrieving the database network endpoints. These configura-
tions can be dynamically injected into the web tier container by
means the ConfigMap concept.

3.2 Application management tier
The Application Management tier is responsible for fault detec-
tion, fault recovery and auto-scaling of web and and database Pods
depending on the number of active tenants. To implement this func-
tionality, the application management service depends upon the
services of the underlying cloud platform for automated creation
or removal of virtual machines, as well as for monitoring various
related metrics. To support performance isolation and adaptive
resource allocation, the application management tier also includes
a distributed monitoring subsystem and central tenant profiler
component to categorize tenants in aggressive, abiding and pas-
sive tenants [11, 25]. Finally, this tier is responsible for mapping
expected and actual workloads to optimal placement of web and
database instances across virtual machines so that SLOs are met.
This involves determining placement constraints about deployment
network topology and VM sizes as well as employing appropriate
placement algorithms for meeting SLOs ánd obtaining a good over-
all server consolidation. Each time when staging a new release
of a SaaS application in the production environment, the Applica-
tion management tier also uses resource-optimization tools such as
DBSeer1 to optimize VM sizes and the number of replicated VMs.

When using Kubernetes, existing application management code
needs to be adapted for the APIs of Kubernetes. The placement
decision also becomes more complex when using Kubernetes as it
additionally involves determining appropriate Pod resource alloca-
tion policies, replication levels of Pods and placement constraints
about co-location of Pods on VMs. On the positive side, the central
profiling component can be simplified because it only needs to de-
tect aggressive tenants as a result of a simplified request scheduling
tier (see next section).

1https://dbseer.org

3.3 Load balancing tier
The load balancer tier of a traditional SaaS application relies on
an off-the shelve load balancer software that can be configured to
ensure that tenants’s requests are appropriately forwarded to web
application instances using a specific load balancing strategy such
as as client-IP based load balancing.

When using a container orchestration framework, it is in princi-
ple possible to either use or bypass the built-in load balancers of
Kubernetes. Services use by default the L4 loadbalancer. To expose
the web tier service to end users outside the cluster, services must
be exposed via a node port and an external loadbalancer of the
underlying cloud provider forwards to the node port; alternatively,
a declarative specification for an L7 loadbalancer can be created.

3.4 Request scheduling tier
Krebs et al. [11] presents three architectural approaches to imple-
ment admission control of aggressive tenants by means of request
scheduling: (i) delaying agressive tenants, (ii) blacklisting agres-
sive tenants, (iii) round robin scheduling with different queues for
agressive and abiding tenants. To ensure that the network is spared
from the agressive tenants, request schedulers are placed before or
within the load balancing tier.

No request scheduling architecture exists to our knowledge that
supports all three requirements of adaptive performance isolation
simultaneously. It is possible to extend the round-robin architecture
with support for QoS differentiation by dispatching abiding tenants
in separate queues, one for each SLO class. Alternatively, Walraven
et al. [25] extends the round-robin architecture with support for
adaptive resource allocation by dividing abiding tenants into queues
for normal and passive tenants. However, the configuration of
the priority/frequency to schedule requests from the passive and
normal queues must be continuously re-tuned when the ratio of
passive and normal tenants changes over time.

Container orchestration frameworks have the potential to sim-
plify the overall performance isolation architecture by taking care
of the QoS differentiation and adaptive resource allocation require-
ments, while request schedulers are simplified as they only need to
take care of admission control.

3.4.1 QoS differentiation
In line with the approach for multi-tenant databases [15] we pro-
pose to group tenants according to their SLA class in separate
Services for the web and data base tier. Thus, golden and bronze
Services with their own pool of replicated Pods are created for the
web tier and golden and bronze database clusters are setup for the
database tier. We also define separate user groups for each SLA
class. In Kubernetes, this concept of user group is called a Names-
pace and it is possible to define a total of resource quota across
the cluster of nodes as well as default resource allocation policies
for the Pods in that Namespace. Golden Pods can also be assigned
CPUs that are co-located in the same motherboard socket to ensure
stable memory-IO and prevent cache interference.

Note that tenants from the highest SLO class, who wish security
isolation and direct monitoring of resource usage, can also be as-
signed their own Service and Namespace. The advantage of such
tenant-specific service is that tenant administrators may also be
allowed administrative access to all API objects and resources of
that Namespace as well as access to the resource usage metrics

https://dbseer.org
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API of Kubernetes for monitoring their Pods. QoS differentiation
is then again considered as a placement decision problem, i.e find-
ing the most cost-efficient placement of golden and bronze Pods
on a cluster of nodes while still meeting SLOs of tenants. Lang et
al. [15] shows that the placement decision problem for databases
is a non-linear programming problem (i.e resources do not scale
linearly with the numbers of tenants).

3.4.2 Adaptive resource allocation
SLO violation events of response latency can be mapped to appro-
priate resource usage thresholds of auto-scalers. The default auto-
scaler in Kubernetes, named Horizontal Pod Autoscaler (HPA) [6],
can be configured to keep average resource usage of a Service’s
Pods around a certain pivotal point. This pivotal point p is specified
as the ratio of a Pod’s request where p can also be higher than 1.
In any case, the limit of the Pod must be set high enough so that
the performance of the Pod is not constrained by this limit when
its resource consumption level is at the pivotal point p.

Auto-scaling is the state-of-practice mechanism to support adap-
tive resource allocation of the web tier. Auto-scaling of databases
to meet SLOs in the presence of fluctuating workloads, however,
is a challenging problem [28]. Therefore vertical scaling concepts
of Kubernetes are also relevant. More specifically, resource over-
subscription concepts and resource contention prioritization schemes
of Kubernetes can be leveraged to simulate vertical scaling without
needing to restart Pods. Over-subscription entails that the limits
of a Pod can be set higher than its requests in order to allow
for bursty workloads. In this way, however, a node can be over-
subscribed when the sum of the limits of the co-located Pods
is higher than the node allocatable resources. When the node is
actually about to run out of CPU or memory resources, CPU throt-
tling or Pod eviction mechanisms are respectively triggered. For
deciding which Pods are to be throttled/evicted first, Kubernetes
uses different prioritization schemes for CPU and memory. For
CPU, the ratio between the requests of the co-located Pods is used
for dividing the available resources [24], whereas for memory a
hierarchical priority scheme is used [13].

4 Performance evaluation
This section investigates if the problem of adaptive performance
isolation can be comprehensively resolved by resource manage-
ment concepts of Kubernetes. Firstly, we present the evaluation
methodology. Secondly, we investigate if QoS differentiation and
admission control (in case containers are reserved for a single ten-
ant) can be supported by Pods that are configured with container
allocation policies. Thereafter, we assess the SLO stability offered
by the above concepts when increasing/decreasing the number of
tenants and applying a linear scaling of containers accordingly. As
a reminder, SLO stability refers to the ability to cost-effectively
meet SLOs in the presence of global changes of workload without
requiring manual recalibration. Finally we investigate if there is
a causal relation between the adaptive resource management con-
cepts of Kubernetes for horizontal and vertical scaling of Pods on
the other hand and problems with SLO stability on the other hand.

4.1 Evaluation methodology
It is well know that for a workload with a linearly increasing request
rate and a fixed set of resources, the average request latency remains

below a constant until the request rate crosses a certain critical
point of RR requests per sec. We name this point the cut-off point.
After this cut-off point, the latency will increase asymptotically [22].
This common knowledge is formally supported by the universal
law of scalability [8], which defines a model of relative capacity.
Moreover, the law of scalability can be combined with the law of
Little [18] to arrive at a quadratic expression for request latency in
terms of the request rate RR:

Latency(RR) =
1+α (RR−1)+βRR(RR−1)

λ
with λ the number of Pod replicas, α the queuing factor (which
represent that part of the computation that cannot be executed in
parallel by multiple Pods and β the coherency penalty (for example,
the time needed for the system to become stable after an increase
or decrease of request rate).

The goal of the following experiments is to investigate to which
extent the cut-off point of a Service for a set of tenants T remains
the same when changing the global workload context in which the
Pods of the Service runs. We see three types of changes in global
workload context:
1. A Pod runs first alone on a node and then additional Pods are
co-located on that node.
2. Primary stressed resources of co-located pods can be the same or
different. The former deployment context is named a homogeneous
pod deployment whereas the latter is named a heterogeneous Pod
deployment in the remainder of this paper.
3. The replication level of Pods changes because the number of
tenants changes.

If the cut-off point remains the same across different workload
contexts, then the desired property of SLO stability can be guar-
anteed provided the SLO between a tenant and a SaaS application
consists of the following clauses:

• for any request rate RR <= RRcutof f , the application is able
to offer an average response latency L that is equal or higher
than the average of Latency(RR). For example, an average
latency of 5ms is acceptable for a request-oriented SaaS-
application[2].

• the SaaS application commits to a latency target LT that is
specified as a percentile o(e.g. 95th percentile of the requests
must meet L).

• each of the T tenants commits to a request rate that is lower
than RRcutof f /T .

The latency target LT is thus guaranteed as long as the total request
rate from all tenants stays under the cut-off point RRcutof f .

In order to experimentally measure the cut-off point in different
experiments, we consider a Golden and a Bronze SLO and associated
Pod, Namespace and Service configurations in Kubernetes. In all
experiments requests are sent in parallel to the Golden and Bronze
Service and the request rate RR is gradually increased. Requests are
sent using a multi-threaded python script. For a request rate RR
and a number of tenants T , this script will spin up T threads and
each thread sends a request every 1/RR seconds. For every request
rate iteration 1600 requests are sent. The actual response latency of
every request will be measured. The cut-off point corresponds with
the request rate RR after which the target latency LT is violated.
Note that the experiments differ in the workload context in which
the Golden and Bronze Pods run. In some experiments we have
configured the Golden and Bronze Pods with different resource
stress parameters to evaluate homogeneous and heterogeneous
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Pod deployments. In other experiments, we will gradually change
the replication level of the the Golden and Bronze service.

4.1.1 Synthetic SaaS application
We assume our experimental SaaS application does not exhibit
performance dependencies towards a shared component so we
can measure as accurately as possible the behavior of Kubernetes.
Therefore, we have not used a real SaaS application or existing
benchmark for this experiment. Instead we have designed a syn-
thetic SaaS application that consists of a single container can be
configured as being CPU-bound, memory-bound, or I/O-bound.

The design of this synthetic application is based on the COMITRE
approach [21]. The application is written in C++ and offers a REST
API (SaaS_API) to which users can send request. Every user be-
longs to a tenant and therefore each request has a tenantId field
so that the application can retrieve the tenant-specific configura-
tion parameters. Among others, these parameters specify for three
resource types (CPU, memory and disk I/O) a natural number that
corresponds with the stress intensity. Then for each resource type,
three specific stress functions are sequentially invoked as follows.
First, a quantity of memory is allocated. Then, a computation is
performed and the results of this computation are written to file.
Finally allocated memory is released. When the stress parameter
for a resource is set to 0, the corresponding stress function will not
execute its code. As such it is possible to configure whether the
application is CPU, memory- or disk I/O-bound so we can simulate
both data-driven workloads as well as user-facing web applications.

The implementation of the different stress functions is widely
inspired by the benchmark proposed by Matthews et al. [19]. This
work has developed this benchmark to evaluate performance isola-
tion between virtual machines. We haven chosen this benchmark
because most other benchmarks such as lmbench[20], sysbench
and stress-ng[10] only allow generating the highest possible stress
load, while the benchmark by Matthews et al. allows us to configure
the stress functions so that different computational complexities
can be configured so that different average response latencies of
the SaaS application can be simulated.

4.1.2 Experimental setup
The testbed for running all the experiments of this paper is an
isolated part of a private OpenStack cloud, version Liberty. The
OpenStack cloud consists of a master-slave architecture with two
controller machines and droplets, on which VMs can be scheduled.
The droplets have Intel(R) Xeon(R) CPU E5-2650 2.00GHz proces-
sors and 64GB DIMM DDR3 memory with Ubuntu xenial, while
the master controller is an Intel(R) Xeon(R) CPU E5-2430 2.20GHz
machine with Ubuntu xenial. Each droplet has two 10Gbit network
interfaces. The droplets have 16 CPU cores of which 2 are reserved
for the operation of the Openstack cloud. The storage infrastruc-
ture of the OpenStack private cloud is a two-tiered Ceph-based
service consisting of replicated SSD storage across the droplets
which serves as a cache for 30 SAS drives. Infrequently used data is
eventually flushed to the SAS drives. The Kubernetes cluster that
has been deployed on the Openstack cloud used version is installed
with the kubeadm tool while using Kubernetes version 1.14.9.
The cluster consists of one master node and one or more worker
nodes depending on the experiment. Worker nodes are deployed in
VMs with 2 CPUs and 4GB RAM that all run in the same physical
droplet. That way we can eliminate variations in network delay as

an external variable. Moreover, the virtual CPU cores of each VM
are exclusively pinned to physical cores that belong to the the same
motherboard socket of the droplet. This latter configuration has a
surprising impact on SLO stability for CPU (see Section 4.2.3).

4.2 QoS differentiation
4.2.1 Terminology
We assume that a Pod with a larger resource allocation policy can
offer a better SLO. We define a Pod as comprising:

• an Application A that stresses one Resource type R ∈

{CPU , IO,MEM}. The application A is developed/config-
ured to meet an acceptable response latency L on node
architecture ARCH .

• Resource allocation policy Q = cpu,mem, with cpu and
mem defined as a <request,limit> pair. To avoid the Pod
being evicted due to resource contention we set request ==
limit .

If we can achieve QoS differentiation, then we can define a
Golden PodG and a Bronze PodBwithG .Q > B.Q andGRRcut−of f >

BRRcut−of f .

4.2.2 Configuration of the SaaS application
To achieve an average response latency of L of 5ms for the syn-
thethic SaaS application on our testbed, the following stress param-
eters had to be set:

Cpu 150
Memory 12000
IO 100

Table 1. Stress parameters for the synthetic SaaS applications so
that latency L 5ms

We have defined a Golden and Bronze Pod for the synthetic SaaS
application with request == limits as follows. We have not set
any limits on disk usage.

BRONZE:
cpu: 237m
memory: 875Mi

GOLD:
cpu: 950m
memory: 1900Mi

4.2.3 Results
Tables 2, 3 and 4 contain the observed cut-off points for the Bronze
and Golden service, respectively, in a single Pod placement (where
no other Pods are placed on the same node), in a homogeneous Pod
placement (where a Golden and a Bronze Pod on the same node
stress the same resource), and in a heterogeneous Pod placement
(where Pods stress different resources). Not surprisingly, we can
observe that QoS differentiation can be achieved as the bronze pods
have a cut-off point that is smaller than that of Golden pods.

Finding 1: Comparing the cut-off points of single Pod deploy-
ments, homogeneous and heterogeneous Pod deployments shows
that SLO stability of golden and bronze Pods is automatically attain-
able in various deployment scenarios with the exception of three
cases: (i) co-locating CPU-intensive golden and bronze Pods on the
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same node enables both Pods to sustain a higher cut-off point (due
to shared CPU caches, cfr. Section 4.1.2); similarly, (ii) co-locating a
memory-intensive golden Pod with a disk-io intensive bronze Pod
can enable the former Pod to sustain a higher cut-off point (because
the memory paging systems of the underlying VM performs better
with an already warmed-up disk-io connection,cfr. Section 4.1.2);
(iii) co-locating disk-io intensive golden and bronze Pods causes a
drop of the cut-off point for both Pods (due to the lack of perfor-
mance isolation for disk/io). In the former two scenarios, although
very specific to the properties of the experimental testbed, SLOs can
be enforced in a more cost-optimal fashion but SLO instability may
occur if the specific co-location pattern of that scenario changes.
The third scenario is clearly better to be avoided at all.

Tenant gold SLO Cut-off point
Cpu intensive 230
Memory intensive 205
IO intensive 135

Tenant bronze SLO Cut-off point
Cpu intensive 45
Memory intensive 45
IO intensive 40

Table 2. Cut-off points for single Pod placements

Tenant gold SLA Cut-off point Tenant bronze SLA Cut-offpunt
Cpu intensive 255 Cpu intensive 50
Memory intensive 205 Memory intensive 40
IO intensive 110 IO intensive 40

Table 3. Cut-off points for homogeneous Pod placements

Tenant gold SLA Cut-off point Tenant bronze SLA Cut-offpunt
Memory intensive 205 Cpu intensive 55
IO intensive 135 Cpu intensive 50
CPU intensive 230 Memory intensive 45
IO intensive 130 Memory intensive 45
CPU intensive 235 IO intensive 45
Memory intensive 220 IO intensive 45

Table 4. Cut-off points for heterogeneous Pod placements

4.3 Admission control
Although admission control is the main responsibility of an exter-
nal request scheduler (see Section 3.5), container-level admission
control is relevant for Pods that are reserved for a separate ten-
ant. Figure 2 shows a request latency graph for homogeneous Pod
placements when the bronzen tenant send requests at a rate higher
than its observed cut-off point. As such it is considered an agressive
tenant. The question is whether the golden tenant is affected by
this aggressive tenant.

Finding 2: In case of single-tenant Pods it is possible to comple-
mentary enforce admission control between co-located Pods, except
for homogeneous deployments of i/o-intensive Pods. This is because
Kubernetes currently lacks performance isolation for disk-i/o.

4.4 Stability in the presence of global workload changes
This section presents the results of an experiment where the golden
and bronze Service are composed of multiple Pods that are repli-
cated across nodes. We perform an experiment where we start with
1 bronze tenant and 4 golden tenants, measure the cut-off points,
and than replace 1 golden tenant with 1 bronze tenant. In the previ-
ous experiments we have calibrated Pods for 1 tenant. We assume

Figure 2. Request latency graph for homogeneous Pod placements
when bronzen tenant sends requests at a rate higher than its ob-
served cut-off point

that by linear scaling the Pods we can obtain appropriate resource
allocation policies for multiple tenants. As such, the experiment
changes the ratio of golden and bronze pods from 4:1 to 1:4. Figure
3 presents the results. It shows that as a golden tenant is replaced
by a bronze tenant, the average cut-off point of the bronze tenants
increases. Vice versa, when a bronze tenant is replaced by a golden
tenant, the average cut-off point of the bronze tenants decreases.

Finding 3: Linear scaling of Pods in response to addition or re-
moval of tenants does not lead to a stable cut-off point for the
bronze tenants. As such either too much or too few resources are
allocated when relying on linear scaling. This is due to an inherent
non-linear scaling phenomenon [15].

4.5 Adaptive resource allocation
The goal of this experiment is to determine whether the above
observed stability problems are due to the replication and auto-
scaling concepts of Kubernetes. Therefore the goal is to validate
whether these problems also appear when auto-scaling a single-
tenant version of the SaaS application that is configured with only
one SLO and a heavier CPU-intensive parameter of 500. A linearly
increasing workload is again applied. The latency SLO posed for
the SaaS application is set to 75 ms.

Three separate tests are run. The first one subjects the application
to a linearly increasing workload to determine the cut-off point
for one replica. The application’s requests and limits for CPU
and memory are set the same as the golden SaaS application (i.e.
CPU: 950m, memory: 1900Mi). For the second test, the HPA is added
to the cluster and the same linearly increasing workload is again
applied to the application. 80% of the request is selected as the
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Figure 3. Changes in the cut-off point of the bronze service in the
presence of ratio changes

pivotal point p of the HPA. For the third test, a simulation of vertical
scaling is applied by setting the limit of the application for CPU
with 150 millicores higher than its request and by co-locating a
low-priority pod.

Results. The blue and red graphs in Figure 4 show the 95th per-
centile of the latencies without and with the HPA respectively. The
application is able to process 60 requests per second without violat-
ing the SLO. With the HPA, the application is able to process only
110 requests per second without violating the SLO, but at 120 re-
quests per second there is only a slight violation of 77.5 ms. As such,
auto-scaling and replication of Pods only causes a small decrease
in performance for CPU-intensive, single-tenant applications. The
third test tries to rectify the measured SLO violations of the second
test by applying the simulation of vertical scaling. The results are
shown by the gray graph in Figure 4. Although we only increased
the CPU limit with 150 ms, over-provisioning of resources can be
observed as the cut-off points arises at 150 requests per second,
which is substantially larger than the double of the cut-off-point of
a single replica. As such, finding the optimal resource allocation
policies of Pods in order to perfectly meet SLOs in a cost-optimal
way boils again to a resource configuration tuning problem.

Finding 4: The default horizontal autoscaler approximates the
desired SLO stability property for a CPU-intensive application that

Figure 4. 95th percentile latencies of a single-tenant version of
the SaaS application when exposed to a linearly increasing request
rate.

Figure 5. CPU usage during the third test. A new replica is added
to a second worker node when the scaling threshold is breached
and resources are re-claimed from the low priority Pod.

is exposed to a linearly increasing workload. As such, the main
cause of the SLO stability problems of Finding 3 lies with the non-
linear resource scaling phenomenon that appears when the goal is
to meet multiple custom SLOs in a cost-optimal [15].

Figure 5 shows that the simulation of vertical scaling by co-
locating a low-priority pod comes with the benefit of a higher
resource utilization. The low priority pod is able to use the excess
of resources on the node during low workloads. As the workload
rises, the low priority pod is given access to less CPU cycles.

Finding 5: For single-tenant applications, the resource manage-
ment concepts of Kubernetes – in particular concepts for over-
subscription of resources and throttling of lower-priority Pods –
allow to simulate vertical scaling of CPU resources of high-priority
applications and still provide a good overall resource utilization.

5 Related work
Existing research [3, 27] has focused most attention on compar-
ing the performance of a single container against a single virtual
machine, both running directly in Linux on top of a bare-metal
machine. In terms of performance isolation, containers do not yet
provide complete isolation of resources as virtual machines do [27].

Literature on design and evaluation of container orchestration
frameworks originates mostly from Google [1, 23]. The Borg sys-
tem, and its predecessor Omega, are used for running all Google
services. For example, the GCE IaaS uses Borg to schedule VMs
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inside containers. Verma et al. [23] shows that the Borg system,
a predecessor of Kubernetes, supports improved resource utiliza-
tion in terms of number of machines needed for fitting a certain
workload on.

Verma et al.[23] also report that the implementation of the
cgroups mechanism requires substantial tuning of the standard
Linux CPU scheduler in order to achieve both high resource utiliza-
tion and low latency. Leverich et al. [16] also propose an improved
Linux CPU scheduler. An evaluation of this scheduler shows that
the 95th-percentile latency is negatively affected by co-located
workloads but this decrease does not devolve to asymptotic delays.

6 Conclusion
This paper has investigated how commonly supported resource
management concepts of container orchestration frameworks can
simplify performance isolation middleware for multi-tenant SaaS
applications and improve it with the desired property of SLO sta-
bility.

Experiments with co-locating CPU, memory and disk-io inten-
sive workloads, which are based on a synthetic multi-tenant SaaS
application benchmark, show that Kubernetes can support QoS
differentiation, adaptive resource allocation and admission control
for single-tenant Pods with certain guarantees for SLO stability.
Findings 1 and 2 show that in order to prevent SLO instability
and weak performance isolation of aggressive single-tenant Pods,
co-location of disk-io intensive Pods must be avoided at all costs.
Finding 1 further shows that SLO stability can be attained across
a wide range of single Pod deployments, homogeneous and het-
erogeneous Pod deployments with two exceptions that are mainly
due to the experimental testbed. Secondly, Finding 3 implies that
linear scaling of Pods, when tenants subscribe or describe, leads to
SLO instability. Thirdly, Finding 4 demonstrates this SLO instability
is not dominantly caused by the horizontal auto-scaling concepts
of Kubernetes, but by a non-linear resource scaling phenomenon.
Fourthly, Finding 5 shows that the simulation of vertical scaling is
a simple yet effective technique for supporting adaptive resource
allocation.

We conclude that request scheduling architectures can be simpli-
fied to admission control, whereas container orchestration frame-
works can take care of QoS differentiation and adaptive resource
allocation. However, when tenant demand grows and the required
set of replicated Pods must be scaled up, non-linear scaling func-
tions are clearly a better fit for achieving SLO stability. How to inte-
grate such non-linear scaling functions in state-of-the-art container
orchestration frameworks like Kubernetes is an open research chal-
lenge.
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