
Information Systems 96 (2021) 101671

n
t
o
C
o
o

h
0

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

CryptDICE: Distributed data protection system for secure cloud data
storage and computation
Ansar Rafique ∗, Dimitri Van Landuyt, Emad Heydari Beni, Bert Lagaisse, Wouter Joosen
imec-DistriNet, KU Leuven, 3001 Leuven, Belgium

a r t i c l e i n f o

Article history:
Received 11 June 2020
Received in revised form26 September 2020
Accepted 20 October 2020
Available online 30 October 2020
Recommended by Alysson Neves Bessani

Keywords:
Data security and privacy
NoSQL databases
Search over encrypted data
Database-as-a-Service
Data encryption
Cloud computing
Query processing
Computation over encrypted data

a b s t r a c t

Cloud storage allows organizations to store data at remote sites of service providers. Although cloud
storage services offer numerous benefits, they also involve new risks and challenges with respect
to data security and privacy aspects. To preserve confidentiality, data must be encrypted before
outsourcing to the cloud. Although this approach protects the security and privacy aspects of data, it
also impedes regular functionality such as executing queries and performing analytical computations.
To address this concern, specific data encryption schemes (e.g., deterministic, random, homomorphic,
order-preserving, etc.) can be adopted that still support the execution of different types of queries
(e.g., equality search, full-text search, etc.) over encrypted data.

However, these specialized data encryption schemes have to be implemented and integrated in
the application and their adoption introduces an extra layer of complexity in the application code.
Moreover, as these schemes imply trade-offs between performance and security, storage efficiency, etc,
making the appropriate trade-off is a challenging and non-trivial task. In addition, to support aggregate
queries, User Defined Functions (UDF) have to be implemented directly in the database engine and
these implementations are specific to each underlying data storage technology, which demands expert
knowledge and in turn increases management complexity.

In this paper, we introduce CryptDICE, a distributed data protection system that (i) provides built-
in support for a number of different data encryption schemes, made accessible via annotations that
represent application-specific (search) requirements; (ii) supports making appropriate trade-offs and
execution of these encryption decisions at diverse levels of data granularity; and (iii) integrates a
lightweight service that performs dynamic deployment of User Defined Functions (UDF) –without
performing any alteration directly in the database engine– for heterogeneous NoSQL databases in
order to realize low-latency aggregate queries and also to avoid expensive data shuffling (from the
cloud to an on-premise data center). We have validated CryptDICE in the context of a realistic
industrial SaaS application and carried out an extensive functional validation, which shows the
applicability of the middleware platform. In addition, our experimental evaluation efforts confirm that
the performance overhead of CryptDICE is acceptable and validates the performance optimizations for
achieving low-latency aggregate queries.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The emergence of Cloud computing has led to a paradigm shift,
ot only in the technological and business landscape, but also in
he database landscape [1,2], as illustrated with the emergence
f delivery models such as Database-as-a-Service (DBaaS) [3].
loud storage services enables data owners –individuals and
rganizations– to store their data remotely in a flexible and
n-demand manner, without taking on the responsibility for

∗ Corresponding author.
E-mail address: Ansar.Rafique@cs.kuleuven.be (A. Rafique).
URL: https://distrinet.cs.kuleuven.be/people/ansarr (A. Rafique).
ttps://doi.org/10.1016/j.is.2020.101671
306-4379/© 2020 Elsevier Ltd. All rights reserved.
provisioning, configuring, scaling, and maintaining these storage
systems [4].

In the context of cloud storage, one of the biggest challenges
is to provide data management support for cloud-based appli-
cations in an efficient and scalable manner [5]. The need to
support data-intensive cloud applications in an efficient and scal-
able manner have gained substantial interest, and led to the
development of cloud-friendly database technologies, commonly
known under the umbrella term of NoSQL. NoSQL databases are
built from the ground up to scale horizontally just by simply
adding more nodes. As such, they yield numerous benefits in
terms of high availability, elastic scalability, and data model flexi-
bility —concerns that are particularly relevant in cloud computing
and more specifically in cloud storage [6].

https://doi.org/10.1016/j.is.2020.101671
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2020.101671&domain=pdf
mailto:Ansar.Rafique@cs.kuleuven.be
https://distrinet.cs.kuleuven.be/people/ansarr
https://doi.org/10.1016/j.is.2020.101671

A. Rafique, D. Van Landuyt, E. Heydari Beni et al. Information Systems 96 (2021) 101671

o
i
m
t
p
i
p
G
n
c
a
f

v
a
d
1
t
n
b
d
e
o
h
u
c

s
n
a
f
a
a
o
s
s
t
t
p
s
l
S
a
c
i
r
T
w
f
U
d
i
a

D
t
e
d
a
b
(
c
s
r
s
g

Although cloud data storage provides numerous benefits to
rganizations, there are also caveats that significantly hindering
ts rapid and wider adoption. In essence, the DBaaS delivery
odel requires and assumes a degree of trust in the provider

hat will not be realistic or desirable in different real-world ap-
lication contexts. Many applications involve storing sensitive
nformation that when compromised will seriously jeopardize the
rivacy of individuals and violate data protection laws such as the
DPR. Recent data security breaches and their impact on a large
umber of individuals and organizations have exacerbated these
oncerns [7–9]. In practice, data security and privacy protection
re among the most important factors when choosing a database
or cloud-based applications [10].

NoSQL databases, which are prominently used in a cloud en-
ironment do not provide strong built-in security mechanisms
nd thus rely on developers to engage with a wide range of
ata protection measures from within the application code [10–
5]. Although adopting these measures in application will lead
o an adequate protection of the data, many of them impose
on-trivial trade-offs: for example, the use of data encryption
efore persisting data has implications on the ability to execute
ifferent types of search (e.g., equality search, full-text search,
tc.) and aggregate queries. To address this concern, a number
f different data encryption schemes (e.g., deterministic, random,
omomorphic, etc.) have been proposed [16–21], which can be
sed to execute different types of queries and perform complex
omputation over encrypted data.
However, the approach to adopt specific data encryption

chemes to support different types of queries comes with several
on-trivial challenges. Firstly, as these data encryption schemes
re commonly integrated in the application layer to support dif-
erent types of search and aggregate queries over encrypted data,
n extra layer of complexity is introduced in the application, and
level of expertise is required from application developers. Sec-
ndly, as these different data encryption schemes have specific
ecurity strengths and weaknesses (e.g., the random encryption
cheme offers greater data security strength than other encryp-
ion schemes, but has no built-in support for executing queries),
rade-offs need to be made between strong security, increased
erformance, and rich query capabilities. For example, enforcing
trong data security requirements can lead to a system that is
ess performance-oriented and offers limited query capabilities.
imilarly, disregarding privacy towards increased performance
nd rich query capabilities can lead to pushing off critical se-
urity requirements. Therefore, making appropriate trade-offs
s a non-trivial task which highly depends on the application
equirements and on the limitations imposed to sensitive data.
his task becomes more complex when different types of data
ith varying privacy requirements are considered. Thirdly and

inally, to support aggregate queries in the application requires
ser Defined Functions (UDF) to be supported directly within the
atabase engine, which not only demands expert knowledge and
ntroduces additional management complexity, but also raises
dditional security concerns.
To address the above-mentioned concerns, we present Crypt-

ICE, a flexible, generic, reusable, and distributed data protec-
ion system that facilitates building applications that involve
ncrypted data storage and search, but does not require an in-
epth understanding of different data encryption schemes. To
ddress the problems highlighted above, CryptDICE (i) provides
uilt-in support for several different data encryption schemes
by integrating a number of established libraries), yet hides the
omplexity from the developer via annotations, which steer the
election of the most appropriate scheme for a given (search)
equirement; (ii) supports trade-offs between performance and
ecurity and enables executing different types of search and ag-
regate queries over encrypted data for a variety of different
2

NoSQL databases; (iii) incorporates a lightweight service that
reduces the management complexity and also mitigates high-
security risks by preventing developers from implementing UDF
directly in the database engine. The latter service –which has
built-in support for heterogeneous NoSQL databases– rather im-
plements UDF in the application code and provides migration
transparency (from on-premise to the cloud) in order to perform
complex computations next to the database engine purely for
the sake of performance, i.e., to realize low-latency aggregate
queries and also to avoid expensive data shuffling (from cloud
to an on-premise data center).

There exists several individual implementations [22,23] and
combined libraries [7,24–26] that can be used by software devel-
opers, but to our knowledge, an integrated and developer-friendly
framework such as CryptDICE that reduces the implementation
and management complexity from a developer point of view and
offers performance optimization, is lacking. We have validated
a prototype implementation of CryptDICE in the context of a
realistic industrial Software-as-a-Service (SaaS) application, car-
ried out an extensive functional validation, and also conducted a
thorough experimental evaluation. The evaluation results confirm
that CryptDICE significantly reduces the required development
time for enabling data encryption and supporting different types
of interactive search queries over encrypted data as well as offers
performance optimizations for achieving low-latency aggregate
queries. We have also conducted a thorough experimental eval-
uation to analyze the performance overhead of CryptDICE, which
is shown to be negligible.

The remainder of this paper is structured as follows: Section 2
provides relevant background information and derives the prob-
lem statement motivated by a realistic industrial SaaS application
case. Section 3 presents the design of our proposed CryptDICE
system, while Section 4 details the prototype based on CryptDICE.
Section 5 presents our extensive evaluation of the CryptDICE
system in three different aspects. We contrast our solution with
related works in Section 6. Finally, Section 7 concludes this paper
and indicates directions for future research.

2. Motivation

The motivation for this work is based on our experiences with
large-scale Software-as-a-Service (SaaS) applications, which stem
from several applied research projects. These projects have been
carried out in active collaboration with industrial SaaS application
providers. For simplicity of illustration, we focus on one such
application case from the financial domain, a Billing-as-a-Service
document management SaaS application, which is introduced in
Section 2.1. More specifically, we highlight the problem of lack
of trust in cloud storage services that are used by this SaaS
application. Then, Section 2.2 first gives a high-level overview of
NoSQL databases that are increasingly being used in cloud-based
storage services and then provides a comparison of data security
features supported in popular NoSQL databases. Next, Section 2.3
presents the specific details of different data encryption schemes
that are used to perform search and computation over encrypted
data. Finally, Section 2.4 elaborates on the problem statement.

2.1. Billing-as-a-Service SaaS application

Cloud computing in general and SaaS, in particular, have
become increasingly popular and equally important for many
ICT actors in both business-to-business (B2B) and business-to-
consumer (B2C) markets. Take an example of a billing process,
which is an unavoidable, time-consuming, and recurring task for
any organization. Therefore by outsourcing the billing process

A. Rafique, D. Van Landuyt, E. Heydari Beni et al. Information Systems 96 (2021) 101671
Fig. 1. The use of third-party storage services involves traversing a trust
boundary between the users, tenants and SaaS provider on the one hand and
the cloud-based storage services on the other hand.

to specialized third-party solution providers, a reduction in op-
erating expenses can be achieved. The Billing-as-a-Service SaaS
application is a B2B cloud offering that makes the recurring billing
process as seamless as possible and provides a wide range of
financial services –including the management of financial docu-
ments such as invoices, bills, accounts, payments– to its customer
organizations (aka tenants). The tenants of this SaaS application
are customer organizations of all sizes from different application
domains (e.g., banks, hospitals, telecom operators etc.), which
impose strict requirements on data protection and privacy. The
SaaS application allows tenants to securely manage their financial
documents and yet enables them to perform several different
types of search operations.

Lack of trust in cloud storage services. Despite the eviden-
tial popularity and growing trend of adopting cloud storage for
provisioning the persistence of data, the users, and tenant organi-
zations (e.g., banks or hospitals); service providers are essentially
required to trust these cloud-based storage services and their
providers (as shown in Fig. 1). To manage such trust concerns, for
example when storing sensitive data, appropriate data protection
steps must be taken before outsourcing data to external storage
providers.

2.2. NoSQL databases

In recent years, a fairly large number of database technolo-
gies (> 225) have emerged that are collectively referred to as
NoSQL. NoSQL databases are non-relational, distributed, horizon-
tally scalable, highly available, and schema-free in nature [27].
Due to these well-known benefits, NoSQL databases are increas-
ingly popular in cloud storage and are widely supported by multi-
ple cloud service providers [7,28]. NoSQL encompass a wide range
of technologies that can store different types of data; such as
structured, semi-structured, unstructured, and polymorphic data.
Most of the NoSQL databases do not support Atomicity, Consis-
tency, Isolation, and Durability (ACID) properties and are instead
relying on the basically available, soft state, and eventual consis-
tency (BASE) principles [29]. They sacrifice strong consistency in
exchange for high availability and scalability [30] and are clas-
sified based on four different data models: key-value databases,
wide-column stores, document stores, and graph databases.

Data protection support in NoSQL databases. NoSQL databases
have not been designed with security aspects in mind [12,22,
31] and most of the NoSQL databases initially did not provide
any built-in data security mechanism. However, in recent years,
security has been identified as a major area of concern and

the issue has prompted the interest and development of data

3

security features in NoSQL databases [32,33]. Table 1 provide a
comparison of popular NoSQL databases based on their current
support for data security features.

As shown in the third column of Table 1, most of the NoSQL
databases support for authentication, for example to gain admin-
istrator access. However, the level of support is highly dependent
on a certain type of NoSQL database(s). For example, Apache
Cassandra, MongoDB, and Neo4J1 support both internal and ex-
ternal authentication mechanisms, whereas Apache HBase only
supports external authentication. The fourth column of Table 1
indicates that most of the NoSQL databases either employ Role-
Based Access Control (RBAC) or manage Access Control List (ACL)
to give different permissions to users based on their roles and
to govern access to a database system. As an example, Apache
Cassandra, MongoDB, and Neo4J employ RBAC to restrict access
to users through assigned roles, whereas Apache HBase, CouchDB,
Redis, and Riak manage ACL that provides users access to par-
ticular portions of data and as such limits their access in terms
of the commands that they can execute. The fifth column of the
table gives information about the communication protocol that
these NoSQL databases rely on to establish secure communication
between application and database servers. As shown, most of the
NoSQL databases either use the Transport Layer Security (TLS)
or the Secure Shell (SSH) to protect data-at-transit from client
machines to a database cluster and as such prevent accidental or
deliberate attempts to read data.

The final column of Table 1 summarizes the support for data
protection in NoSQL databases. In relational databases, there are
multiple levels at which encryption is supported. For example,
most relational databases provide a Transparent Data Encryption
(TDE) feature that encrypts the entire database at rest at the
lowest level –the storage-level– and hence requires no modifi-
cation in the database or application code. This enables data to
be transparently encrypted and decrypted for database users and
as such allowing easier administration of day-to-day encryption
operations. As the schema is designed up-front where all the
rows have the same columns, relational databases also support
Field Level Encryption (FLE), which is a server-side facility that
encrypts only selected columns.

In contrast, most of the community editions of NoSQL
databases lack such built-in data protection support and store
data as plaintext, which incurs many security risks. As shown in
the final column of Table 1, there are several enterprise NoSQL
database products (e.g., Cassandra, MongoDB, etc.) that use the
TDE feature to support encryption in which the entire database
files are encrypted at the file system or block level. Similarly,
some enterprise NoSQL databases such as CouchDB and Neo4J use
TDE provided by third-party on-disk encryption software vendors
to support data-at-rest encryption. However, applying encryption
at the storage level or the database level is problematic for four
main reasons. Firstly, there is a trust boundary between the client
and the database (deployed and fully controlled by an external
cloud provider), and thus for example, an encryption key is also
stored alongside the encrypted data. Secondly, both encryption at
storage and database levels only accomplish coarse-grained level
encryption and do not address the encryption requirements at
the finest level of granularity, which is FLE. For example, they do
not offer the flexibility to encrypt only a specific set of columns,
which is the most preferred approach since less data is encrypted
thus improving on latency. Thirdly, they do not provide the means
to enable search on encrypted data, hence lacking the ability to
support different types of queries (e.g., equality search, full-text
search, etc.) and the potential to perform complex computation.
Finally, data is only encrypted when writing to the disk, which

1 https://neo4j.com/.

https://neo4j.com/

A. Rafique, D. Van Landuyt, E. Heydari Beni et al. Information Systems 96 (2021) 101671

T
C

t
p
t
a
s
i
p
i
f
r
n
t
r

h
q
c
T
s

R

able 1
omparison of popular NoSQL databases on the basis of their support for built-in data security features.
Database Data model Authenticationa Authorization Communication

protocol
Data protectionb

Apache Cassandra Columnar Supports both internal and
external authentication
mechanisms

Employs Role-Based Access
Control (RBAC)

TLS TDE

MongoDB Document Supports both internal and
external authentication
mechanisms

Employs Role-Based Access
Control (RBAC)

SSL/TLS TDE

Apache HBase Columnar Supports only external
authentication mechanism

Manages Access Control List
(ACL)

SSH TDE

CouchDB Document Supports Basic authentication,
Cookie authentication, and
Proxy authentication

Manages Access Control List
(ACL)

TLS TDE (third-party)

Redis Key-value Supports only username/
password authentication

Manages Access Control List
(ACL)

SSL/TLS TDE

Riak Key-value Supports S3 authentication and
Keystone authentication

Manages Access Control List
(ACL)

TLS Not supported

Voldemort Key-value Not supported Not supported HTTP Not supported (?)

MonetDB Columnar Supports only username/
password authentication

Not supported SSH Not supported

Amazon DynamoDB Key-value/
Document

Supports S3 authentication Handles by AWS Identity and
Access Management (IAM)

HTTP TDE

Neo4J Graph Supports both internal and
external authentication
mechanisms

Employs Role-Based Access
Control (RBAC)

TLS TDE (third-party)

aExternal authentication is only supported in enterprise NoSQL database products.
bData protection support is only available in enterprise NoSQL database products that encrypt the whole database files using Transparent Data Encryption (TDE) at
the storage level.
implies that the data is not encrypted in RAM and as such enables
a root user to read data in RAM (e.g., by attaching the GNU
debugger (GDB) [34] to a database).

2.3. Data encryption schemes

Data encryption enables the protection of sensitive data and
herefore addresses many privacy-related issues in cloud com-
uting. However, as discussed in the previous section, most of
he community editions of NoSQL databases lack such support
nd thus rely on developers to engage with data protection mea-
ures in the application code. As a result, not only complexity
s substantially increased, but also executing search queries and
erforming computation over encrypted data becomes highly
nefficient: a simple search query over an encrypted database
irst involves a full database scan where all the encrypted data is
etrieved from the database by the application. Then, each record
eeds to be decrypted in the application and compared against
he conditions of the specified query. Only then a set of matching
esults can be obtained.

To alleviate this, several different data encryption schemes
ave emerged, which can be used to execute interactive search
ueries and also to perform complex computations over en-
rypted data, without the need to decrypt each database record.
able 2 provides an overview of data encryption schemes and
ummarizes their built-in support for different types of queries.

andom/probabilistic encryption. Random (RND) is an encryp-
tion scheme in which encrypting the same plaintext results in a
random ciphertext. This is one of the strongest data protection
schemes and can be achieved, for example, by applying the Ad-
vanced Encryption Standard (AES) with a random initialization
vector (IV) [14]. This scheme, as such, prevents data from being
compromised through plaintext attacks and is also considered
to be computationally secure [35]. However, this scheme is not
designed to produce ciphertexts over which meaningful compu-
tations can be performed [22]. The applicability of this scheme
4

is, therefore, limited to the protection of data in cases where no
queries are to be performed directly over encrypted data, such as
data transmission or data storage [14,22]. As a result, retrieving
data encrypted using this encryption scheme would require a full
database scan and subsequent decryption, which is not feasible
in larger-scale databases.

Deterministic encryption. Deterministic (DET) encryption is a
type of encryption scheme in which the resulting converted in-
formation (aka ciphertext) can be repeatedly produced, given the
same source text (aka plaintext) and key. This can be achieved, for
example, by using the AES with fixed IV [14]. In comparison to the
RND encryption scheme, which is considered to be highly (com-
putationally) secure, DET encryption is known to be less secure
as it provides the information of plaintext-ciphertext pair [14].
This scheme facilitates to perform queries with equality checks
over encrypted data. However, to perform range queries over
encrypted data using this encryption scheme, first a full database
scan, then data retrieval, and finally decryption is required, since
equality search does not suffice [22].

Order-preserving encryption. In the order-preserving (OP) en-
cryption scheme, the order relationship between plaintext is pre-
served after the encryption process. As such, the order relations
among the encrypted data is revealed, not the actual data itself.
The order comparison is a well-known operation in the database
world and it is commonly used for performing operations such as
ORDERBY, MIN, MAX, SORT, etc [23]. This encryption scheme is
considered to be less secure than the DET encryption scheme [14].
The order-revealing nature of this data encryption scheme al-
lows for comparisons (i.e. range queries that require the order
of data) to be performed over encrypted data. This is also the
main characteristic that makes it vulnerable to inference attacks
where knowledge of data distribution may lead to extraction of
confidential data [22,36].

A. Rafique, D. Van Landuyt, E. Heydari Beni et al. Information Systems 96 (2021) 101671

T
S
t

s
q
r
t
r
o
p
m
d
e
f

2

c
s
p
l
(
t
(
p
a
q
d

i
t
a
f
a
d
a
t
d
t
p
a
m
l
c
p
A
t
t
t

c

able 2
ummary of existing data encryption schemes and their potential support for different type of queries, which is denoted by (×) symbol. The (#) symbol represents
he security strength of these encryption schemes, ranging from the strongest () to the weakest ().
Support Data encryption schemes

Random (RND) Deterministic (DET) Order-Preserving (OP) Homomorphic (HOM)
Data confidentiality × × × ×

Security strength H#
Equality search ×

Complex boolean search ×

Range queries ×

Aggregate queries (sum and average) ×

Full-Text search
Implementationa Application code Application code Application code Application code/ database function

aThese data encryption schemes need to be implemented in the application code with the exception of HOM, which can also be implemented and deployed as a
database function directly in the underlying database engine. However, such a feature (where a database function can be implemented and deployed directly in the
database engine) is not available in all NoSQL databases.
Homomorphic encryption. Homomorphic (HOM) encryption
chemes support queries that require computation (i.e. aggregate
ueries) to be performed directly on the encrypted data without
equiring access to a secret key (i.e. private key) and decrypting
he encrypted data [37,38]. The result of such a computation also
emains in an encrypted form and can be revealed by the owner
f the secret key [39]. In recent years, research on fully homomor-
hic (HOM) encryption has resulted in significant advances that
ake it possible to perform arbitrary computations on encrypted
ata. However, the computation involved in fully homomorphic
ncryption is still prohibitively high, which makes it unsuitable
or resource-constrained systems [35].

.4. Problem statement

Due to the lack of trust in cloud-based storage services, data
onfidentiality must be protected or well-preserved before out-
ourcing sensitive data to the cloud. The current state of sup-
ort in NoSQL databases further substantiates this view and
eads to the conclusion that the application-level data protection
e.g., encryption) is required. This approach allows (i) addressing
he trust-related issues between the client and the database,
ii) achieving the desired level of flexibility in terms of sup-
orting encryption at the finest level of granularity (attributes),
nd (iii) offering support for executing different types of search
ueries and performing complex computation over encrypted
ata.
However, it also poses additional challenges regarding both

mplementation complexity and management complexity. We fur-
her elaborate on these challenges in the context of the Billing-
s-a-Service SaaS application –which enables customers to per-
orm several different operations (i.e. interactive search queries
nd complex computation) over their securely-managed financial
ocuments– discussed in Section 2.1. To perform these oper-
tions efficiently, without the need to decrypt each record in
he database, the application will need to integrate and combine
ifferent encryption schemes, leveraging their intrinsic charac-
eristics (as discussed in Section 2.3). For example, finding all
aid/unpaid invoices that belong to a specific customer requires
n equality search, which can be supported by using an imple-
entation of the deterministic encryption scheme (DET). Simi-

arly, computing the sum of all invoices that belong to a specific
ustomer requires executing an aggregate query and can be sup-
orted by adopting the homomorphic encryption scheme (HOM).
s another example, finding all paid/unpaid invoices that belong
o a customer whose name starts with the letter ‘‘X’’ requires full-
ext search functionality and is not directly supported by any of
he data encryption schemes.

To support the above-mentioned queries, different data en-

ryption schemes –that typically require expertise and custom

5

coding– need to be combined and used within the application,
which is not always easy to deploy or maintain and tends to
be a time-consuming and error-prone task. The implementa-
tion complexity is substantially increased especially when such
queries (e.g., full-text search) are supported in the application,
which are not directly addressed by any of the data encryption
schemes. Moreover, combining different data encryption schemes
also requires making trade-offs between security, performance,
and query capabilities, which is a non-trivial task and increases
complexity from the application developer’s point of view. In ad-
dition, to perform the complex computation over encrypted data,
User Defined Functions (UDF) need to be implemented directly
in the database engine for each underlying database, which not
only demands expertise, but in turn also introduces additional
management complexity.

3. CryptDICE: a distributed data protection system

CryptDICE hides the complexity of different data encryption
schemes and performs their adaptive selection in order to provide
data protection support, yet enables the execution of (search and
aggregate) queries over encrypted data. This section provides an
in-depth overview of the design objectives and the architecture
of our proposed system. At its core, the system is designed with
several objectives in mind:

• Support data protection guarantees at different levels of
granularity (e.g., object-level encryption, field-level encryp-
tion, etc.).

• Transparent from the developers/end-users perspective and
refrain them from engaging in the complexity of different
data security mechanisms.

• Perform an adaptive selection of different (encryption)
schemes to ensure data protection and also to enable ex-
ecution of (search and aggregate) queries.

• Avoid transmission of unencrypted data over public commu-
nication channels.

• The cost of enabling data encryption support and executing
interactive search queries should be minimal and must be
achieved without making significant changes in the appli-
cation code in order to make the system viable for a wide
range of applications.

• Perform complex computation (i.e. aggregate queries) on
the encrypted data as close as possible to the underlying
database engine in order to avoid expensive data shuffling
and to obtain optimal performance.

• Do not introduce any modification in the underlying
database engine in order to make the system compatible

with a variety of different NoSQL databases.

A. Rafique, D. Van Landuyt, E. Heydari Beni et al. Information Systems 96 (2021) 101671

p
t
d
a
t
t
c
e
t

b
t
d
a
m
i
a
i
e
t
s
f
s
f
s
o

3 t
t

Fig. 2. Architecture of our proposed CryptDICE system.

These objectives led us to design CryptDICE, a distributed data
rotection system that ensures data confidentiality and enables
he execution of interactive search queries for different NoSQL
atabases with no modification in the underlying database engine
nd minimum required changes (in the form of annotations) on
he client-side applications. As such, it allows service providers
o seamlessly outsource their sensitive data to the third-party
loud storage services while ensuring data confidentiality and yet
nabling them to operate on their outsourced data. Fig. 2 depicts
he organization of major components in our proposed system.

CryptDICE is mainly composed of three layers (from top to
ottom): the Application layer, the Secure Data Access layer, and
he NoSQL Abstraction API layer. The system can be used on top of
ifferent cloud deployment models: on-premise, cloud provider,
nd cloud storage provider (aka Database-as-a-Service deploy-
ent). The overall deployment strategy consists of a trusted zone

n which all three layers of the CryptDICE system are deployed
long with a private encryption key and an untrusted zone, which
s composed of different cloud deployment models. The private
ncryption key is used to encrypt/decrypt data transmitted be-
ween the application and an untrusted zone. This deployment
trategy ensures that data is always transmitted in an encrypted
orm over public communication channels. The remainder of this
ection presents all three layers of the proposed system and also
urther discusses different deployment models. In particular, we
hed more detailed light on different subsystems and components
f CryptDICE.

.1. Application layer

The Application layer communicates directly with the Crypt-
DICE system (i.e. the Secure Data Access layer) and performs
6

different operations. For example, the application provides data
that need protection support and also issues different queries
to the CryptDICE system. The data protection in the system in-
volves three phases: (i) the application uses built-in annotations
of the CryptDICE system and performs different operations on
plaintext2 data using the Java Persistence API (JPA) specification,
(ii) the data protection support is enabled by the CryptDICE
system, which accordingly selects appropriate data encryption
schemes for satisfying different data protection requirements, (iii)
a pipe-and-filter approach is taken in which the transformation
of data is applied before actual storing it and the database itself
is fully agnostic of this. Hence, data protection in CryptDICE
is enabled by an unmodified NoSQL database engine. Similar
to the approach used for data protection, the query execution
in the system also involves three phases. First, the application
issues queries based on Java Persistence Query Language (JPQL)3
Backus-Naur Form (BNF)4 grammar. Second, the query parsing,
encryption, decryption, and rewriting processes are done by the
designed components of the CryptDICE system. Last, server-side
query execution and complex computation over encrypted data
is performed by an unmodified NoSQL database engine.

3.2. Secure data access layer

The Secure Data Access layer consists of two core subsystems
(as shown in green color): the Data Management system and the
Query Execution system. As implied by the names, the former is
responsible to perform encrypted data management operations
(e.g., encrypted CRUD operations) in our proposed system, while
the latter is responsible to generate and coordinate as well as
to initiate the execution of search and aggregate queries over
encrypted data. The rest of this section covers each of these
subsystems in more detail. However, to provide a brief overview
of the roles and responsibilities of different components visible
in Fig. 2, both these systems communicate with the Encryp-
tion Selector component, which selects the appropriate data
encryption schemes based on the specific data storage and search
requirements. The Annotations Manager component filters dif-
ferent types of annotations at run-time specified on an entity
object (e.g., JPA-specific annotations and built-in annotations of
the CryptDICE system) and stores the meta-data in the external
cache of the CryptDICE system (not depicted). The Query Pro-
cessor component is mainly responsible to perform different
types of queries (e.g., equality-search queries, full-text search
queries) and also manipulates local and remote processing of
aggregate queries.

The Encryption API & Schemes component supports two
key functions with respect to data protection and search. First, it
provides a uniform API to perform encryption and decryption op-
erations across various NoSQL databases. To realize this support,
the component implements the standard interfaces of the NoSQL
Abstraction API layer and overrides all the methods with the prac-
tical implementation of data protection principles. Second, the
component encapsulates the complexity and supports the plugin-
based implementation of different third-party data encryption
schemes (e.g., random, deterministic, homomorphic, etc.) dis-
cussed in Section 2.3. As such, based on the scheme selected by
the Encryption Selector component, the Encryption API
& Schemes component uses the right implementation of the
encryption scheme to encrypt and decrypt data as well as to

2 In this rest of this paper, whenever we mention plaintext, we actually refer
o the object, which could also be the unstructured data and not necessarily only
he structured data.
3 https://docs.oracle.com/javaee/7/tutorial/persistence-querylanguage.htm.
4 http://itdoc.hitachi.co.jp/manuals/3020/30203Y0710e/EY070508.HTM.

https://docs.oracle.com/javaee/7/tutorial/persistence-querylanguage.htm
http://itdoc.hitachi.co.jp/manuals/3020/30203Y0710e/EY070508.HTM

A. Rafique, D. Van Landuyt, E. Heydari Beni et al. Information Systems 96 (2021) 101671

h

Fig. 3. Detailed overview of different components of the Data Management
system.

perform data processing. The latter component, in turn, consists
of multiple subcomponents (not depicted), which are used by
both subsystems (the Data Management system and the Query
Execution system) and onward remain center of focus. In the
rest of this section, different components of both subsystems are
described concisely.

3.2.1. Data management
A more detailed view on the Data Management system, which

follows the pipe-and-filter architecture [40] to offer data pro-
tection support is depicted in Fig. 3. As shown, the system is
comprised of a number of components, each performing dif-
ferent tasks: the Data Access component, the Annotations
Manager component, the Secure Entity Manager component,
the Encryption Scheme Selector component, the Encrypt
component, and the Decrypt component. As shown in Fig. 3,
the application communicates directly with the Data Management
system and performs several operations (e.g., secure data storage
operations) on the plaintext data.

The component responsible to act on behalf of the Data Man-
agement system is the Data Access component. This component
provides an abstraction API (e.g., JPA interface) for the applica-
tions to interact with the Data Management system and perform
encrypted create, read, update, delete (CRUD) operations and as
such also hides the underneath complexity of implementing dif-
ferent cryptographic primitives from the application developers.
As the proposed system provides JPA as a standard interface,
it supports built-in annotations defined in JPA and also imple-
ments additional annotations, which represent metadata. The
Data Access component communicates with the Annotations
7

Manager component, which accesses different annotations of a
class, method, and field at runtime. The latter component filters
all the annotations to determine different security mechanisms
required to provide data protection support.

As the system supports encryption at different levels of gran-
ularity, it is important to determine the level at which data
protection is required. For example, if object-level data protection
is required, data (as a whole object) is encrypted in a single
operation. This approach provides higher storage performance
with limited query capabilities as a full database scan is required
to process different queries, which takes considerable amounts of
time. On the other hand, if field-level data protection is required,
each field of an object is encrypted individually. This approach
provides rich query capabilities, however, at the cost of increased
storage performance. To ensure the selection of appropriate data
protection level, the Annotations Manager component reads
all annotations at runtime using Reflection5 on a per request
level. This impacts the performance drastically and therefore,
special precautions are taken to minimize the adverse impact
on performance (e.g., caching). As a result, the Annotations
Manager component only filters the annotations once, on the
first request, and stores the metadata in the external cache of
the CryptDICE system. This means when the latter requests are
found in the cache, i.e., there is a cache hit, the requests are served
directly from the cache.

The request is then directed to the Secure Entity Manager
component (a subcomponent of the Encryption API & Schemes
component), which implements the EntityManager6 interface
of JPA and overrides all the methods that deal with CRUD op-
erations. This enables all CRUD methods of the EntityManager
interface to be implemented with security features in mind for
potential data compromise, hence ensuring the required level of
data protection. This component also enables existing JPA-based
applications to use the proposed system, which has built-in data
protection features for a wide range of different NoSQL databases
without making any modifications in the application code. To
address different requirements for data protection, the Secure
Entity Manager component uses the Encryption Scheme Se-
lector component, which selects the appropriate data encryp-
tion schemes7 for given data storage and search requirements.
For example, if object-level protection is required, the component
selects the data encryption scheme (e.g., RND) different than
the one used for field-level protection (e.g., DET). Similarly, if a
specific field/member of an entity also requires complex com-
putation to be performed on, the component selects the data
encryption scheme (e.g., HOM) different than when the full-text
search queries are required.

The Secure Entity Manager component then interacts with
the Encrypt component (a subcomponent of the Encryption
API & Schemes component) and requests to apply the appropri-
ate encryption operations according to the selected encryption
schemes. This is the key component of the Data Management
system, which not only applies encryption operations but also
performs additional functions. For example, if a specific field of
an entity also requires full-text search, which is not supported
by any of the existing data encryption schemes, the compo-
nent builds encrypted custom indexes and stores them in the
configurable index database of CryptDICE (e.g., Apache Lucene,
Elasticsearch) to facilitate full-text search queries (cf. the second
column of Table 2 to follow a number of steps that CryptDICE
takes to support different types of queries). The output of the

5 https://www.oracle.com/technical-resources/articles/java/javareflection.
tml.
6 https://docs.oracle.com/javaee/7/api/javax/persistence/EntityManager.html.
7 Table 2 presents an overview of different data encryption schemes.

https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://docs.oracle.com/javaee/7/api/javax/persistence/EntityManager.html

A. Rafique, D. Van Landuyt, E. Heydari Beni et al. Information Systems 96 (2021) 101671

t
o
o
r
e
p

E
e
c
o
D
c
c
o
s
d

3

s
M
c
o
Q
c
R
A
t

b
J
e

Q
f
i
s
r
T
t
c
e
e
P
c
u

S

Fig. 4. Detailed overview of different components involved in the Query Execu-
ion system. CryptDICE supports two alternative strategies for the deployment
f the Query Processor component. The component is (i) deployed in an
n-premise environment () and thus complex aggregate queries are processed
emotely (remote to the database engine), and (ii) migrated from an on-premise
nvironment to the cloud provider and thus complex aggregate queries are
rocessed locally (local to the database engine).

ncrypt component is the ciphered data, which is stored in
xternal third-party cloud providers. The counterpart of the En-
rypt component, the Decrypt component (a subcomponent
f the Encryption API & Schemes component) is used by the
ata Management system to reverse the operation, by converting
iphered data into plaintext data (e.g., an entity object). The De-
rypt component selects the appropriate decryption operations
n each field of an entity according to the applied data encryption
chemes. The output of this component (i.e. decrypted plaintext
ata) is then sent back to the application.

.2.2. Query execution
A more detailed view on the Query Execution system is pre-

ented in Fig. 4. Similar to the deployment setup of the Data
anagement system, the deployment setup of Query Execution
onsists of a trusted zone and an untrusted zone. The core
f the Query Execution system consists of six components: the
uery Parser component, the Encryption Scheme Selector
omponent, the Encrypt and Decrypt components, the Query
ewriter component, and the Query Processor component.
s shown, the application communicates with the Query Execu-
ion system and issues different (non-encrypted) JPQL queries.

The Query Parser component acts as a proxy respondent on
ehalf of the Query Execution system. The component consumes
PQL queries submitted to the Query Execution system, analyzes
very single query, and emits the results. More specifically, the
 s

8

uery Parser component processes queries in two steps. The
irst step transforms a query from a raw string of characters
nto an abstract syntax tree (AST) representation. The second
tep scans the AST and finds all the column identifiers and their
espective values as well as filters different clauses of the query.
he extraction of clauses helps the Query Parser component
o determine the feasibility of executing different queries. To
onfirm that, the component checks if column identifiers are
ncrypted using the appropriate data encryption schemes. For
xample, if a full-text search query is performed, the Query
arser component checks if the column identifiers and their
orresponding values are encrypted and stored in the database
sing the data encryption scheme that supports full-text search.
After that, the component interacts with Encryption Scheme

elector and Encrypt components. The roles and responsibili-
ties of both of these components have been discussed in detail in
Section 3.2.1. However, to briefly describe their functions, the En-
cryption Scheme Selector component selects the appropriate
data encryption schemes, whereas the Encrypt component (a
subcomponent of the Encryption API & Schemes component)
performs various encryption operations according to the selected
data encryption schemes. In the specific case of query execution,
the Encryption Scheme Selector component selects data en-
cryption schemes for each corresponding value of the column
identifiers. The Encrypt component, on the other hand, performs
the actual encryption operations on the values of the column
identifiers based on the selected data encryption schemes. The
output of this component is the ciphered data, which is then
passed to the Query Rewriter component (a subcomponent of
the Encryption API & Schemes component). The latter compo-
nent rewrites the query, and as such replaces the non-encrypted
parts of the JPQL query with the encrypted parts. This component
ensures that the modified JPQL query is secure in the sense that
it does not reveal any confidential data, hence, it is safe to be
sent over unsecured communication channels. The updated query
is then passed to the Query Processor component, which is
considered to be the heart of the CryptDICE system and also
works as the core component of the Query Execution system.

Query processor. The Query Processor component executes
different types of search and aggregate queries (e.g., equality
search queries, full-text search queries, complex computation,
etc.) over encrypted data. The component (locally/remotely) con-
nects to the database engine depending upon its deployment
strategy and executes the query. Most of these queries (i.e. non-
aggregate queries) are executed when the component is deployed
in an on-premise environment (i.e. trusted zone). This involves
remotely connecting to the database engine deployed in third-
party cloud providers (i.e. untrusted zone), executing different
types of non-aggregate queries over encrypted data, and return-
ing all the ciphered data from the untrusted zone to the trusted
zone. As depicted in Fig. 4, the component receives ciphered data,
which is then passed to the Decrypt component of the Query
Execution system. The returned ciphered data (column identifiers
and their corresponding values of each row) is then decrypted
according to the applied data encryption schemes. The output
(i.e. decrypted plaintext data) of the latter component is then sent
back to the application.

In the case of performing a complex computation over en-
crypted data (e.g., SUM, MAX, MIN, AVERAGE), there are two
alternative ways: database-side computation and client-side com-
putation. For the database-side computation, User Defined Func-
tions (UDF) needs to be implemented inside the database en-
gine for each underlying database technology, which introduces
several key challenges8 regarding database-specific performance

8 We discuss each of these challenges in detail in the comparative analysis
ection (Section 5.3.3).

A. Rafique, D. Van Landuyt, E. Heydari Beni et al. Information Systems 96 (2021) 101671

o
c
i
s
a
l

F
a
z
d
t
i
c
c
i
p
i

f
n
l
A
p
c
b
Q
m
T
f
l
Q
e
a
q
a
i
d
f
t

ptimality, limited applicability, and increased maintainability of
ode. The other way is to perform computation at the client-side,
nside the CryptDICE system. In this context, the Query Proces-
or component of the CryptDICE system provides support for two
lternative deployment strategies: remote data processing and
ocal data processing.

Remote data processing. In the first deployment strategy (1 in
ig. 4), the Query Processor component is deployed along with
ll other components of the Query Execution system in the trusted
one (client-side). Similar to executing different types of queries
iscussed above, this strategy also requires remotely connecting
o the database engine. However, instead of executing queries
nside the database, this strategy requires (i) retrieving all en-
rypted data from the remote database (deployed in an external
loud provider) to the Query Processor component (deployed
n an on-premise environment), (ii) performing complex com-
utation over encrypted data (e.g., computing sum or average)
nside the Query Execution system (a subsystem of CryptDICE),
and (iii) returning the computed result (e.g., total sum or average)
to the Decrypt component. The computed result is then de-
crypted using the homomorphic (HOM) data encryption scheme
and sent back to the application. This deployment strategy is less
adequate and certainly more costly in terms of performance as it
involves remote data shuffling from a cloud server to a private
on-premise network. The performance issue of data shuffling is
one of the areas of major concern that is particularly relevant for
applications that deal with large data volumes.

Local data processing. To minimize the amount of data shuf-
ling that occurs between the cloud provider and an on-premise
etwork, the Query Processor component is designed as a
ightweight service, which also provides migration transparency.
s such, the component can be migrated from one location (on-
remise environment) to another (cloud provider) without the
lients being notified about the relocation and the application
eing aware of the location of the component. In addition, the
uery Processor component is designed with compatibility in
ind in order to make it work with different NoSQL databases.
herefore, this component is also built upon an abstraction API
or NoSQL databases and requires no modification in the under-
ying database engine. In the second strategy (2 in Fig. 4), the
uery Processor component is migrated from an on-premise
nvironment to the cloud provider (e.g., AWS cloud) in order to
void expensive data shuffling and execute low-latency aggregate
ueries. As shown, the Query Distribution component inter-
cts with the Query Processor component, which is deployed
n a public cloud provider to perform computation over encrypted
ata. The latter component completes local data processing, per-
orms computation next to the database engine, and returns only
he computed result (e.g., total sum or average) back to the Query
Distribution component. The computed result is decrypted
using the homomorphic (HOM) data encryption scheme and sent
back to the application. In comparison to the former strategy,
this deployment strategy achieves low-latency aggregate queries,
hence results in performance enhancement.

3.3. NoSQL abstraction API layer

The proposed architecture aims to be generic, in order to
be compatible with most of the existing NoSQL databases with-
out requiring any modifications in the underlying database en-
gine. For this reason, and as also depicted in Fig. 2, we use
the database-agnostic NoSQL Abstraction API layer (e.g., Impetus
Kundera, Hibernate OGM, DataNucleus, EclipseLink etc.), which is
commonly referred to as Object-NoSQL Database Mapper (ONDM)
framework. The layer addresses the heterogeneity problem (in
terms of different APIs) by providing a uniform API to applications
 k

9

for using different NoSQL databases. The NoSQL Abstraction
API layer communicates with the underlying database engine,
deployed in an untrusted environment, and performs different
operations. Besides, data remains encrypted when it leaves the
trusted zone and always stored in the underlying database engine
in an encrypted fashion.

3.4. Deployment models

As depicted in Fig. 2, the CryptDICE system can be used on top
of three different deployment models: on-premise deployment,
cloud provider, and cloud storage provider (aka Database-as-a-
Service deployment). These deployment models are differentiated
depending on who owns and manages them and can be used
without making any changes in the application code and as such
by just configuring the persistence.xml configuration file of
the CryptDICE system. First, CryptDICE can be deployed on top
of an on-premise deployment model in which databases are
deployed and managed locally in an on-premise environment, but
the database administrators cannot necessarily be trustworthy
enough. Second, the system can be deployed and used on top of
a cloud provider in which databases are managed by third-party
cloud providers (e.g., Amazon AWS). In both of these deploy-
ment models, most of the requests from the CryptDICE system
involve performing CRUD operations, executing different types of
queries, and migrating the lightweight service of CryptDICE –that
performs dynamic deployment of User Defined Functions (UDF)–
next to the database engine in order to achieve low-latency
aggregate queries. Third, the system can also be deployed and
used on top of a cloud storage provider. CryptDICE can be used
on top of this deployment model to perform CRUD operations
and execute different types of queries over encrypted data. As the
database is managed as-a-Service by a third-party cloud storage
provider, this deployment model does not offer enough flexibility
to perform dynamic deployment of UDF next to the database
engine.

4. Prototype implementation

A proof-of-concept implementation of CryptDICE is developed
and made available to the community.9 We choose to imple-
ment the prototype of CryptDICE on top of Impetus Kundera,
an open-source abstraction layer (aka Object-NoSQL datastore
mapper (ONDM) framework) so we could avoid dealing with
heterogeneity in terms of different APIs to communicate with
several NoSQL databases and thus reduce the implementation
complexity. Besides, Impetus Kundera also introduces the least
performance overhead, compared to the state-of-practice ONDM
frameworks [41]. Hence, we are able to evaluate its competence
as a data protection system as well as the compatibility with
state-of-the-art and -practice systems and ONDM frameworks.

While the design of CryptDICE is decoupled from any par-
ticular database system, the application case (cf. Section 2.1
for more information about the Billing-as-a-Service application
case) we have built upon CryptDICE is configured to use the
popular column-oriented database such as Apache Cassandra and
the document-based database such as MongoDB. However, it sup-
ports a wide range of other databases: in-memory databases such
as Redis, full-text search engines such as Elasticsearch, big data
processing systems such as Apache Spark, relational databases such
as MySQL, and NoSQL databases such as Oracle NoSQL, Apache
HBase, CouchDB, etc. In addition to the wide range of databases
supported, the prototype also makes use of technologies such

9 The prototype implementation is freely available at: http://people.cs.
uleuven.be/ansar.rafique/CryptDICE.zip.

http://people.cs.kuleuven.be/ansar.rafique/CryptDICE.zip
http://people.cs.kuleuven.be/ansar.rafique/CryptDICE.zip

A. Rafique, D. Van Landuyt, E. Heydari Beni et al. Information Systems 96 (2021) 101671

a
o
f
s
a
n
s
p
d
i
m

a
m
Q
p
i
a
t
C
J
a
c
a
s

F

E

f
d
w
M
t
B
H
t

a
t
d

s Apache Lucence and Elasticsearch for indexing purposes in
rder to facilitate full-text search queries over encrypted data. As
ull-text search is not supported by any of the data encryption
chemes, we have built custom encrypted indexes and employed
key-value datastore such as Redis in a semi-persistent man-
er to take advantage of basic constructions such as persistent
ets and maps. Although the prototype –which supports data
rotection and enables search and computation over encrypted
ata– was implemented on top of specific database versions,
t works with older and newer versions without requiring any
odifications to applications or the databases.
In order to communicate with various back-end databases in
uniform way, the prototype is integrated with standardized
iddleware based Java Persistence API (JPA) and Java Persistence
uery Language (JPQL) and we augment this with a layer of data
rotection and different data encryption schemes. Consequently,
t relies extensively on built-in annotations provided by the JPA
nd also defines a number of custom annotations, which are used
o perform data storage, search, and computation operations.
ryptDICE is transparent to the client application and transforms
PA queries to secure JPQL queries internally. In Table 3, we give
n overview of custom annotations specific to CryptDICE that are
urrently supported and for each annotation, we also describe
sequence of internal actions performed by CryptDICE with a

ummary of their advantages and disadvantages.

db.invoices.mapReduce(
function() {
emit(this.name, this.amount);
}, function(key, values) {
var total = values[0];
for (var i = 1; i < values.length; i++){
total = he_add(total, values[i]);
}
return total;
}
);

Listing 1: An example MongoDB MapReduce query using he_add
function which implements Paillier HOM addition.

CryptDICE supports two modes of execution: local and re-
mote, is implemented in Java 8, and consists of over 13K lines
of Java code. Concerning the necessary cryptographic primitives
(e.g., AES), we have used the implementation of the Java Cryptog-
raphy Extension (JCE). We further leveraged jPaillier [42], a Java
implementation of the Paillier [43] homomorphic cryptosystem
to perform computation in CryptDICE.

To perform a thorough comparative analysis of different pos-
sible ways of performing computation over encrypted data, we
have also implemented the homomorphic addition of the Pail-
lier cryptosystem as User Defined Functions (UDF) directly in
the underlying database engine. In the current implementation,
UDF are employed for two popular NoSQL databases: Cassandra
and MongoDB. The high-level Hom addition function, as shown
below, entails multiplication of the encrypted values m1 and m2.
or brevity, keys and random values are omitted.

nc(m1) · Enc(m2) mod n2

The implementation is based on Javallier [44], a Java library
or the Paillier [43] homomorphic scheme. These UDF can be
eployed in MongoDB and Cassandra through both the middle-
are automatically and the command-line interface manually. In
ongoDB, UDF must be implemented in JavaScript since the mul-

iplication of large integer values requires special types such as
igInteger and MongoDB does not support such types for UDF.
ence, we employed a custom implementation of this missing

ype [45]. The function he_add is added in the system database

10
via a user with privileged access rights. To incorporate these
UDF in queries, we employed Map-Reduce10 functionality. The
map function in MongoDB applies to each input document and
emits key-value pairs. For keys with multiple values, MongoDB
applies the reduce function, which collects and condenses the
aggregated data. Listing 1 illustrates an example query that sums
up the amounts of invoices per person in the Billing-as-a-Service
SaaS application case discussed in Section 2.1.

In the case of Cassandra, we implemented the Hom addition
as a user-defined aggregate function (UDA). A UDA is typically
composed of two functions: a state function to compute the
multiplications on each row and update the query state with the
results for the next row, and a final function to perform some
actions at the end such as division for calculation of averages. A
typical UDA is applied to data stored in a table as part of query
results. To illustrate, the following query goes through all of the
invoices in the Billing-as-a-Service use case and calculates the
sum of all amounts.

SELECT homsum(invoice_amount, invoice_nsquared)
FROM invoices

Cassandra provides the developers with a wider spectrum of
programming languages. We developed the function in Java and
leveraged its native BigInteger type.

5. Evaluation

This section describes the techniques and choices made to
evaluate the efficiency and effectiveness of CryptDICE as well as
to analyze its impact on the overall performance of the applica-
tion. Section 5.1 describes the application setups and discusses
the different deployment setups in which we tested CryptDICE
along with details on software and hardware used for the eval-
uation. Then, our research focuses on a series of experiments,
which are conducted to evaluate CryptDICE in three different
dimensions.

More precisely, first, Section 5.2 examines the development
effort required to enable data encryption support and also to
execute interactive search queries in the application. Then, Sec-
tion 5.3 focuses on the performance analysis of implementing
database functions in order to perform complex computation
over encrypted data. Final, Section 5.4 evaluates the performance
impact, more specifically the performance overhead introduced
by CryptDICE. As the financial sector deals with different types
of sensitive information and needs to comply with several rules
and regulations concerning data security and privacy, we selected
the Billing-as-a-Service SaaS application discussed in Section 2.1.
Therefore, all these evaluations are conducted in the context of
our implementation of the billing SaaS application.

5.1. Application setup

In order to evaluate different aspects of our proposed system,
we have implemented two application prototypes, which are
based on the Java Persistence API (JPA) standard and perform
the same set of operations. These prototypes are implemented
to provide secure data storage services (i.e. encrypted CRUD op-
erations) and to execute interactive search queries as well as to
perform complex computation over encrypted data. To validate
our approach, in all experiments, we compare CryptDICE+ES, an
pplication prototype of the Billing-as-a-Service SaaS applica-
ion built on top of CryptDICE and has a built-in support for
ifferent data encryption schemes with Baseline, an application

10 https://docs.mongodb.com/manual/core/map-reduce/.

https://docs.mongodb.com/manual/core/map-reduce/

A. Rafique, D. Van Landuyt, E. Heydari Beni et al. Information Systems 96 (2021) 101671

T
A

i
f
a
c
g
(
b
s
r
s
p
i
b
b
a

able 3
n overview of custom annotations, which are currently supported in CryptDICE.
Annotation CryptDICE Advantages Disadvantages
@Entity({
@MetaInfo(key = ‘‘data’’,
value = ‘‘Confidential’’),
@MetaInfo(key = ‘‘type’’,
value = ‘‘Customer’’)})

1. Encrypt the full entity using AES or any
other configurable encryption algorithm.
2. Store the encrypted entity in the
database.

A one-time encryption
operation, hence efficient
for write performance.

Expensive search operations as a full
database scan is required.

@Entity({
@MetaInfo(key = ‘‘data’’,
value = ‘‘Confidential’’),
@MetaInfo(key = ‘‘type’’,
value = ‘‘Customer’’)})
@Confidential(members =
{‘‘firstName’’, ‘‘lastName’’})

1. Encrypt each specified member of an
entity individually using AES or any other
configurable encryption algorithm.
2. Store each encrypted member of an
entity in the database.

Efficient search operations
as a full database scan is
not required.

1. Multiple encryption operations are
required to encrypt each member of an
entity individually.
2. Inefficient for write performance.

@Entity({
@MetaInfo(key = ‘‘data’’,
value = ‘‘Confidential’’),
@MetaInfo(key = ‘‘type’’,
value = ‘‘Customer’’)})
@FullTextSearch(
members = {‘‘address’’})

1. Tokenize each specified member of an
entity.
2. Encrypt each token individually.
3. Store each encrypted token in the index
database (e.g., Elasticsearch).
4. Encrypt each specified member of an
entity individually using AES or any other
configurable encryption algorithm.
5. Store each encrypted member of an
entity in the primary database (e.g.,
Cassandra/MongoDB).

Enables to perform a
full-text search over the
encrypted data.

1. Multiple encryption operations are
required to encrypt each member of an
entity individually.
2. Multiple encryption operations are
required to encrypt multiple tokens of
an individual member.
3. Inefficient for write performance.

@Entity({
@MetaInfo(key = ‘‘data’’,
value = ‘‘Confidential’’),
@MetaInfo(key = ‘‘type’’,
value = ‘‘Document")})
@Aggregate(members = {
‘‘amount’’, function =
Function.ALL})

1. Encrypt each specified member of an
entity individually using Paillier asymmetric
algorithm.
2. Store each encrypted member of an
entity in the database.

Enables to perform
aggregate functions (e.g.,
SUM, MAX, MIN, AVG)
over the encrypted data.

1. Database space is increased
significantly.
2. It is computationally intensive and
also expensive.
Table 4
Table schema for storing personal information of customers of the Billing-as-a-Service SaaS application.

Key
Identification Contacts Tenant

CustomerNo Surname Name Address Contact TenantID

@EqualitySearch @FullTextSearch @EqualitySearch

DET CUSTOM DET
prototype of the Billing-as-a-Service SaaS application built on
top of Impetus Kundera (i.e. data access middleware platform)
albeit without any inherent support for data encryption. There-
fore, CryptDICE+ES has built-in capabilities to provide secure data
storage services, to execute different types of interactive search
queries, and also to perform computation over encrypted data,
whereas such capabilities need to be manually implemented for
Baseline.

To evaluate our application prototypes in a more realistic
setup, two table schemas are designed with a one-to-many re-
lationship between them. This association between the tables
leads to a realistic representation of many use cases from several
different application domains. The first table schema, Customer,
s shown in Table 4 that stores personal information from dif-
erent customers. As shown, for each customer, the table stores
n application generated key (CustomerID), while each row is
omposed of a set of tuples (Identification, Contacts, Tenant) that
roup distinct column qualifiers holding customer’s information
CustomerNo, Surname, Name, Address, Contact, TenantID). Ta-
le 4 also shows a number of annotations, which are used to
pecify different types of search requirements. Based on these
equirements, CryptDICE selects the appropriate data encryption
chemes to be applied on each column in order to ensure the
rivacy of customer’s personal information, while still enabling
nteractive search queries on encrypted data. The last row of Ta-
le 4 proposes possibles data encryption schemes, which are used
y CryptDICE to encrypt different columns of the table. As shown,
CUSTOM data encryption scheme is implemented to encrypt the
11
column qualifiers Address and Contact in order to support full-
text search operations on these columns. The remaining column
qualifiers of the table are encrypted with the deterministic (DET)
encryption scheme.

The second table schema, Document, is shown in Table 5 that
stores various types of financial documents (e.g., invoices, bills)
for different customers of the application. The key (DocumentID)
is a unique identifier generated by the application and each row
is composed of a set of tuples (Document Information, Customer)
grouping distinct columns holding relevant information for ev-
ery document of the customer (DocumentNo, Type, Status, Date,
Amount, CustomerID). The last row of Table 5 shows the possible
data encryption schemes, which are used by CryptDICE to encrypt
different columns of the table schema. For example, the column
qualifier Amount is encrypted with the homomorphic (HOM)
encryption scheme in order to perform complex computation
(e.g., SUM, MAX, MIN, AVERAGE) over the encrypted amount,
while the remaining columns of the table are encrypted with the
deterministic (DET) encryption scheme.

5.2. Cost of enabling data encryption support

In this part of the evaluation, we examine the development
cost in terms of lines of code added to enable data encryp-
tion support and also quantify the estimated development effort
needed to implement different data encryption schemes in order
to support various types of queries. To enable data encryption

A. Rafique, D. Van Landuyt, E. Heydari Beni et al. Information Systems 96 (2021) 101671

s
p
f
a
c
a

c
p
c
l
t
p
f
l
b
c
t
i
c
i
f
o
e
l
i
l
b
F
4

o
t
d
p
a
s
t
t
@
l
u
c
o
F
f
f
a
C
u

5
m

D

Table 5
Table schema for storing documents belonging to different customers of the Billing-as-a-Service SaaS application.

Key
Document information Customer

DocumentNo Type Status Date Amount CustomerID

@EqualitySearch @Aggregate @EqualitySearch

DET HOM DET
d
e
e
o
i
e
S
s
C
d
w
n
a
e

m
r
o
s
a
d

5

c
s
u
d
t
d

support, we consider encryption at different levels of granularity
for both application prototypes discussed in Section 5.1. For ex-
ample, encryption is supported at the level of individual object
(which is represented as EncryptObj) and also at the level of a
pecific field (which is represented as EncryptF). From a database
erspective, an object represents a row of the table, whereas a
ield corresponds to a column of the table. Similarly, for both
pplication prototypes, different data encryption schemes are
onsidered to process various types of queries. The results of this
spect of the evaluation are presented in Table 6.
As shown in the third row of Table 6, to provide data en-

ryption support, the Baseline prototype (that has no built-in
rovisions for data encryption) needs to implement 123 lines of
ode to achieve object-level encryption (i.e. EncryptObj) and 192
ines of code to perform field-level encryption (i.e. EncryptF). In
he case of object-level encryption, it is a one-time encryption
rocess in which the whole object is encrypted, whereas each
ield of an object needs to be encrypted separately for the field-
evel encryption. Therefore, more lines of code are required to
e implemented for encryption at the level of specific fields as
ompared to the object-level encryption. To support different
ypes of interactive search queries, the number of lines of code
ncreases substantially for Baseline. For example, 921 lines of
ode are implemented to support equality search queries. This
ncludes the cost of enabling data encryption support on specific
ields of an object which require search operations (i.e. 192 lines
f code) and also involves the development cost of supporting
quality search queries (i.e. 729 lines of code). Similarly, 1231
ines of code are added to support full-text search queries, which
nclude the cost of implementing equality search queries (i.e. 729
ines of code) and also involve the additional development cost of
uilding and maintaining custom indexes (i.e. 502 lines of code).
inally, to support aggregate queries in the Baseline prototype,
08 lines of code are implemented.
On the other hand, CryptDICE+ES (an application prototype

f the Billing-as-a-Service SaaS application that runs on top of
he CryptDICE system, which has built-in support for different
ata encryption schemes) only requires the introduction of ap-
ropriate annotations in order to enable data encryption support
nd also to perform interactive search queries. This involves a
ingle line of code in the form of an annotation to be added to
he application. As shown in the last row of Table 6, to achieve
he object-level encryption (i.e. EncryptObj) in CryptDICE+ES, the
MetaInfo annotation is used. However, to perform the field-
evel encryption (i.e. EncryptF), the @Confidential annotation is
sed where each member of an entity, which needs to be en-
rypted can be specified. Similarly, to support different types
f search queries, different security annotations are supported.
or example, if the @Confidential annotation is used and each
ield of an entity is specified, equality search queries can be per-
ormed on the specified fields without introducing an additional
nnotation. To facilitate full-text search and aggregate queries in
ryptDICE+ES, @FullTextSearch and @Aggregate annotations are
sed respectively.

.3. Comparative analysis and performance evaluation of imple-
enting database function

This group of experiments evaluates the performance of Crypt-
ICE in terms of its ability to process queries over encrypted
12
ata when compared to the query processing mechanism that
xecutes directly from the database. Therefore, in this part of the
xperimentation, we consider and evaluate three different modes
f implementing database functions. First, the database function
s implemented as User Defined Functions (UDF) in the database
ngine that executes directly from inside the database daemons.
econd, the database function is implemented in the CryptDICE
ystem in which all the data is fetched and processed inside
ryptDICE and thus remotely to the database engine (i.e. remote
ata processing). Third, the database function is implemented
ithin a lightweight service of CryptDICE, which performs dy-
amic deployment of database functions in the cloud and thus
llows data to be processed as close as possible to the database
ngine (i.e. local data processing).
We present detailed comparative analysis of these three

odes and also report on their performance evaluation with
espect to the execution time. Section 5.3.1 presents an overview
f the experimental setup, while Section 5.3.2 discusses the re-
ults. Finally, in Section 5.3.3, we close with a critical assessment
nd conduct a comparative analysis of the efficiency of all three
ifferent modes of implementing database functions.

.3.1. Experimental setup
The experiments are performed for the table schemas (dis-

ussed in Section 5.1) under different workload conditions. More
pecifically, we start our measurements with 5000 financial doc-
ments of type invoices and increase that number up to 500,000
ocuments. We first insert the information of a number of cus-
omers in the Customer table. Then, we insert a number of
ocuments of type invoices in the Document table that belong

to specific customers. Finally, we perform the aggregate queries
on the Amount column of the Document table, which is encrypted
using the homomorphic encryption scheme.

Table 7 shows a number of aggregate queries, which per-
form complex computation over a different set of encrypted
documents (i.e. invoices), depending upon the search conditions.
However, for evaluation purposes, we consider the worst-case
scenario where the computation is performed over the entire
encrypted invoices stored in the database. Therefore, we have
considered SUM and AVG aggregate functions for the evaluation
as shown in the second and fifth rows of Table 7. We specifically
measure the performance in terms of the execution time to
process different types of aggregate queries, considering all three
modes of implementing database functions. In order to mitigate
the effect of randomness and also to increase the reliability of
the presented results, each experiment is repeated three times
independently and the average values are reported. After the
completion of each run, the entire database engine is emptied and
repopulated.

The database functions are evaluated in a client-server en-
vironment where the client node (running the benchmarking
application) interacts with the server node (running the database
engine). In our experimental setup, the client node is equipped
with Intel(R) Core(TM) i7-865U CPU @1.90 GHz @ 2.60 GHz
processors with 16 GB RAM and Windows 8 operating system
installed. The server node, which is running the database engine
is deployed on two different cloud setups: a private cloud setup
and public cloud setup. First, the server node is deployed on

A. Rafique, D. Van Landuyt, E. Heydari Beni et al. Information Systems 96 (2021) 101671

T
A

t
c

I
a
I
G
o
v
n
h
d

5

i
c
F

a
a

m
i
t
a
e
f
i

w

able 6
n overview of total number of lines of code implemented for both application prototypes to (i) support data encryption at the level of individual object (EncryptObj)

and also at the level of a specific field (EncryptF) (ii) enable different data encryption schemes to facilitate various types of interactive queries.
Prototypes Data encryption support Types of interactive search queries Dynamics of modificationa

EncryptObj EncryptF Equality search Full-text search Aggregate query Application code Annotation

Baselineb 123 192 921 1231 408 ×

CryptDICE+ES

1

×@Entity({
@MetaInfo(key = ‘‘’’
value = ‘‘’’)})

@Confidential(members ={}) @FullTextSearch() @Aggregate()

aIn the Baseline prototype, a number of lines of code are implemented in the application to provide data encryption support and also to offer interactive search
queries, whereas only built-in annotations are used for the CryptDICE+ES prototype.
bBaseline is developed on top of an existing ONDM framework (i.e. Impetus Kundera), which has no built-in support for data encryption.
Table 7
A number of aggregate queries, which are used to perform computation on the encrypted data.
Aggregate Description
SUM Calculate the sum of all invoices
SUM(X) Calculate the sum of all invoices for a specific customer X
SUM(X, Paid) Calculate the sum of all paid invoices for a specific customer X
AVG Calculate the average of all invoices
AVG(X) Calculate the average of all invoices for a specific customer X
AVG(X, Paid) Calculate the average of all paid invoices for a specific customer X
6
l
I
t
T
t
C
e
a
f
p
p
i

p
g
e
d
(
e
t
d
S
d
n
r
o
c
i
i
t

s
d
o
d
e
f
H
o

a private Infrastructure-as-a-service (IaaS) cloud, which is built
using OpenStack and all the experiments are performed and
the corresponding results are reported. As the server node is
deployed in a private cloud and the latency between the client
node and the server node is lower, this may not reflect a realistic
environment and therefore may obscure the performance bene-
fits of the lightweight service of CryptDICE. Therefore, the server
node is then deployed on the Microsoft Azure public cloud11 and
he experiments are repeated for the public cloud setup and the
orresponding results are gathered.
In the case of the private IaaS cloud, the server node has an

ntel(R) 4 Core @ 2.60 GHz processor, 8 GB RAM and is hosted on
compute node of OpenStack. The compute node consists of 40

ntel(R) Xeon(R) CPU E5-2660 v3 @ 2.60 GHz processor with 120
B RAM and runs the Linux/Ubuntu operating system. In the case
f the Microsoft Azure cloud, we instantiated a Standard D2s v3
irtual machine (2 vcpus, 8 GiB memory). To ensure the robust-
ess and comprehensiveness of our analysis and evaluation, we
ave considered both Cassandra and MongoDB as the back-end
atabase engines.

.3.2. Results
The results of all the experiments in which the server node

s deployed in a private cloud and the aggregate functions are
omputed on top of the Cassandra database engine are shown in
ig. 5. The x-axis represents the number of encrypted invoices

on which the aggregate function is performed, whereas the y-
xis shows the total execution time in seconds to compute the
ggregate function for a different number of encrypted invoices.
As shown, the mode in which the database function is imple-

ented as User Defined Functions (UDF) and the computation
s performed inside the database engine performs better than
he other two approaches as it takes less time to compute the
ggregate functions.12 For example, to compute SUM on 500K
ncrypted invoices, the mode in which the computation is per-
ormed inside the database engine takes 26,471 s, the mode
n which the computation is performed inside CryptDICE and

11 https://azure.microsoft.com/en-us/.
12 This mode of computation also presents several challenges and limitations,
hich are subsequently analyzed and discussed in Section 5.3.3.
 c

13
remotely to the database engine (remote data processing) takes
0,681 s, and the mode in which the computation is performed
ocal to the database engine (local data processing) takes 53,587 s.
n the case of remote data processing, data shuffling is required
hat leads to higher-latency in performing the aggregate queries.
his induces an additional cost in terms of the higher execution
ime of fetching all the data from a remote database engine into
ryptDICE and then performing the computation locally. To avoid
xpensive data shuffling, the lightweight service of CryptDICE
llows data to be processed next to the database engine. There-
ore, as shown in Fig. 5 the mode in which the computation is
erformed local to the database engine (local data processing)
erforms much better than the mode in which the computation
s performed remotely to the database engine.

The results of experiments in which the server node is de-
loyed in a public cloud (Microsoft Azure cloud) and the ag-
regate function is computed on top of the Cassandra database
ngine are shown in Fig. 6. As shown, the mode in which the
atabase function is implemented as User Defined Functions
UDF) and the computation is performed inside the database
ngine takes more or less the same amount of time to perform
he aggregate queries as compared to when the server node is
eployed in a private cloud (see Fig. 5). For example, to compute
UM on 500K encrypted invoices, the server node which is
eployed in a private cloud takes 26,471 s, whereas the server
ode which is deployed in a public cloud takes 25,784 s. The
eason that different deployment setups have no major impact
n the performance of aggregate queries is mainly because the
omputation is performed inside the database engine. The small
ncrease in latency, which is mostly visible between 5K to 100K
nvoices is due to extra overhead required to communicate with
he public cloud setup.

Similarly, the mode in which the computation is performed in-
ide CryptDICE and thus remotely to the database engine (remote
ata processing) takes more time to process different number
f encrypted invoices as compared to when the server node is
eployed in a private cloud. The variation is mainly because of an
xtra latency, which is introduced in case of using a public cloud
or data shuffling (from public cloud to on-premise environment).
owever, the performance improvement is clearly evident in case
f a public cloud deployment setup for the mode in which the

omputation is performed local to the database engine (local data

https://azure.microsoft.com/en-us/

A. Rafique, D. Van Landuyt, E. Heydari Beni et al. Information Systems 96 (2021) 101671

d

p
i
F
i
c
e
C

b
f
e
l
a
T
f

5

a
i
q
d
p
p
a
C
m
H
H
o
o
c

D
d
f
b
a
i
t
e
F
a

Fig. 5. Total time in seconds required to compute the SUM aggregate function for the data size ranging from 5K up to 500K financial documents using all three
modes of implementation the database functions. The server node is deployed in a private cloud and the SUM aggregate function is computed on top of the Cassandra
atabase engine.
t
S
w

J
o
i
r
p
a
i
i
t
p

I
l

rocessing). As an example, to compute SUM on 500K encrypted
nvoices, the server node which is deployed in a private cloud (see
ig. 5) takes 53,587 s, whereas the server node which is deployed
n a public cloud (see Fig. 6) takes 49,051 s. In case of a public
loud setup, data shuffling (from public cloud to on-premise
nvironment) is not required as computation is performed inside
ryptDICE, next to the database engine.
Beyond these experiments, we also run some additional

enchmarks as confirmatory runs where the average is calculated
or all the encrypted invoices (run AVG aggregate function). How-
ver, we found the results of the AVG aggregate function to be
argely consistent with the results of the SUM aggregate function
nd they lead to the same conclusions as those reported earlier.
herefore, we have omitted the results of the AVG aggregate
unction from the paper.

.3.3. Comparative analysis
As is obvious from the results of the previous section, we

chieve a significantly better performance when the computation
s performed as close as possible to data. That means, aggregate
ueries, which are executed over homomorphically encrypted
ata from inside the database engine are considered to be better
rospects for achieving high performance both on private and
ublic cloud environments. For this reason, the approach has
lready been used by other prototyped systems. For example,
ryptDB [23], the seminal work in this area, implemented the
ajority of its functionalities such as adjustable encryption and
OM as User Defined Functions (UDF) in the MySQL database.
owever, our extensive analysis show that the approach is sub-
ptimal due to concerns regarding database-specific performance
ptimality, limited applicability, and increased maintainability of
ode.

atabase-specific performance optimality. The performance is
atabase-specific as the approach where the computation is per-
ormed from inside the database engine does not guarantee the
est performance for all NoSQL databases. For example, we have
lso employed UDF in MongoDB and performed all of the exper-
ments again. The results are presented in Table 8, which show
hat this mode of computation performs worst in most cases, and
ven in some cases, it also leads to the ‘‘out-of-memory’’ problem.
or instance, to compute SUM on 40K encrypted invoices, this
pproach takes 502.592 s, which is about ∼250 times slower
14
han when compared to the results of the Cassandra database.
imilarly, we encountered the ‘‘out-of-memory’’ problem when
e tried to compute SUM on more than 40k (i.e. from 80K up

to 500K) encrypted invoices. The reason lies in the fact that
values encrypted by homomorphic encryption schemes become
considerably larger than their plaintext. Therefore, it is crucial
how a database system manages the memory and the states in
case of an evergrowing homomorphic addition. That varies from
database to database depending on the encryption scheme and
the architecture of databases.

On the other hand, the mode in which the computation is
performed inside CryptDICE (both for remote data processing and
local data processing), the performance is not so much dependent
on the underlying database. To confirm that, we run the same
experiments again, but instead of Cassandra, used the MongoDB
database. The results, which are presented in Table 8 show that
the underlying database has no significant impact on the perfor-
mance of the mode in which computation is performed inside
CryptDICE.

Limited applicability. The implementation of UDF in the
database engine for cryptographic protocols is not always straight-
forward. Apart from probable security risks (e.g., side-channel
attacks), the set of programming primitives offered by program-
ming languages in databases is sometimes limited for our pur-
pose. For example, MongoDB functions should be written in
JavaScript. The Paillier HOM addition involves multiplication of
two relatively large integers, and the size of these integers is
dependent on the key size. A safe implementation should use big
integers to avoid overflows. At the time of implementing he_add,
avaScript did not support such primitives. Therefore, we were
bliged to use a custom implementation of arbitrary-length big
ntegers. Furthermore, gaining access to cryptographically secure
andomness can also be a challenge. In the MongoDB case, em-
loying external libraries is infeasible too, and if external libraries
re needed, the source code must be brought to the function
mplementation. On the other hand, CryptDICE is implemented
n Java, which has an extensive set of libraries and supports
ypical primitives require to implement different cryptographic
rotocols.

ncreased maintainability of code. The introduction of external
ibraries as function implementation within databases may cause

A. Rafique, D. Van Landuyt, E. Heydari Beni et al. Information Systems 96 (2021) 101671

d

T
T
d
f
p

p
f
d
(
e
p

5

p
t
t
e
c
a
t

Fig. 6. Total time in seconds required to compute the SUM aggregate function for the data size ranging from 5K up to 500K financial documents using all three
modes of implementation the database functions. The server node is deployed in a public cloud and the SUM aggregate function is computed on top of the Cassandra
atabase engine.
able 8
otal execution time in seconds to compute the SUM aggregate function using all three modes of implementation the database functions. The server node is
eployed in a private cloud and the SUM aggregate function is computed on top of both Cassandra and MongoDB databases. The mode in which the SUM aggregate
unction is executed over homomorphically encrypted financial documents from inside the database engine for the MongoDB database leads to the ‘‘out-of-memory’’
roblem.

of documents
Cassandra MongoDB

Database engine Remote data processing Local data processing Database engine Remote data processing Local data processing

5K 0.441 2.935 2.411 55.238 2.421 2.012
10K 0.587 3.283 2.754 105.994 2.975 2.241
20K 1.283 4.143 3.517 255.207 3.724 2.917
40K 2.058 6.716 5.113 502.592 5.051 4.141
80K 3.844 10.218 9.347 Out of memory error 8.975 7.296
100K 4.375 11.691 10.315 Out of memory error 10.251 8.547
500K 26.471 60.681 53.587 Out of memory error 55.987 48.180
a
o
c
c
e
d
a
t
n
@
s
p
c
2
o

e
b
c

unwanted implementation bugs leading to security vulnerabil-
ities, and on top of that, it may make the debug and update
process cumbersome at scale. Besides, monitoring the database
functions at run-time through logging is not a trivial task too. Pro-
gramming language diversity of database functions causes vendor
lock-in and hinders implementation portability and re-usability.
Each database comes with its requirements, environment and
programming language. Therefore, user-defined functions must
be developed and maintained per database. For example, Mon-
goDB supports JavaScript; Redis supports Lua; and Cassandra
supports several languages including Java.

In a cloud-native setting where service providers want to em-
loy hosted databases, most NoSQL databases do not offer custom
unctions due to practical and security reasons. An interesting
irection for research would be employing Function-as-a-Service
FaaS) paradigm although FaaS do not run within databases. How-
ver, exploring FaaS-based approaches is not in the scope of this
aper.

.4. Performance impact

In this section, we assess the impact of CryptDICE on the
erformance of an application. The experimental results of Sec-
ions 5.2 and 5.3 demonstrate the effectiveness of CryptDICE in
erms of (i) low development effort required to support data
ncryption and to execute interactive search queries over en-
rypted data, and (ii) the ability to perform complex computation
s close as possible to data for multiple NoSQL databases in order
o achieve optimal performance, respectively. This section sheds
 u

15
light on the other side of the coin by showing that these benefits
come with an associated performance overhead. Section 5.4.1
provides details about the experimental setup, while the results
are summarized in Section 5.4.2.

5.4.1. Experimental setup
The experiments are performed for application prototypes (the

Baseline prototype and the CryptDICE+ES prototype) of the Billing-
s-a-Service SaaS application discussed in Section 5.1. We run
ur experiments in a typical client-server fashion where the
lient process runs both application prototypes and communi-
ates directly with the server process, which runs a database
ngine. More specially, the server process runs the MongoDB
atabase service (version 3.6.4) with its default configuration on
single node, which is deployed over the private cloud infras-

ructure using OpenStack. In our experimental setup, the client
ode is equipped with Intel(R) Core(TM) i7-865U CPU @1.90 GHz
2.60 GHz processors with 16 GB RAM andWindows 8 operating

ystem installed. The server node has Intel(R) 4 Core @ 2:60 GHz
rocessor, 8 GB RAM, and is hosted on a compute node. The
ompute node consists of 40 Intel(R) Xeon(R) CPU E5-2660 v3 @
.60 GHz processor with 120 GB RAM and runs the Linux/Ubuntu
perating system.
The experiments –to measure the performance in terms of

xecution time– were conducted on both application prototypes
y executing the CRUD transactions under different workload
onditions. We start our measurements with 5000 financial doc-

ments of type invoices and increase that number up to 1000,000

A. Rafique, D. Van Landuyt, E. Heydari Beni et al. Information Systems 96 (2021) 101671

(
s
a
t
r
r
a
d

5

o
i
m
o
F
e
t
t
o
f
1
C
o

i
w
t
a
a
s
D
i
e
e
i
t
s
i
t
t
s
a
(
D
a

n
l
i
j
t
i
c
o
a
a
i
A
p
i
p
t
s
w

million) documents. We noticed a significant decrease in re-
ponse time for the read performance after the first execution,
n indication that MongoDB is optimized for read and caches
he results of the most recent read requests. To obtain more
eliable results and to eliminate the effects of randomization, we
epeat each experiment for 3 times and record average results. In
ddition, after the completion of each run, we emptied the entire
atabase.

.4.2. Performance results
The results presented in Fig. 7 show the relative performance

verhead introduced by CryptDICE for only large data size, involv-
ng 500K and 1000K encrypted invoices. As shown, the perfor-
ance overhead introduced by CryptDICE is higher for the insert
peration as compared to read, update, and delete operations.
or example, CryptDICE introduces 6,5 % overhead to insert 500K
ncrypted invoices, whereas the performance overhead decreases
o 4,5 % to insert 1000K encrypted invoices. Similarly, the rela-
ive performance overhead of CryptDICE is 2,2 % for 500K read
perations and 1,1 % for 1000K read operations. The relative per-
ormance overhead of CryptDICE is 2,3 % and 1,3 % for 500K and
000K update operations respectively. For the deleted operation,
ryptDICE introduces 2,2 % for 500K encrypted invoices, while the
verhead decreases to 1,3 % for 1000K encrypted invoices.
The results show that the overhead introduced by CryptDICE

s negligible for read, update, and delete operations. However,
e have noticed that CryptDICE incurs considerable overhead for
he insert operation. This can be explained as follows: performing
n insert operation in CryptDICE requires inspecting and filtering
number of additional annotations (cf. Table 3 for annotation

upported in CryptDICE) using reflection at runtime. As Crypt-
ICE supports encryption at different levels of granularity, it first
nspects the annotation to decide if the object as a whole to be
ncrypted or specific members of an object are required to be
ncrypted. In the latter case, first, CryptDICE persists members
n a way that equality-search queries can also be performed on
hem. Then, it filters the annotation to determine if the full-text
earch is required in the application. Again, if the full-text search
s required, it store members of an object in such a way that full-
ext search quires can be performed on them (cf. row 4 in Table 3
o examine different steps CryptDICE takes to support full-text
earch). Finally, CryptDICE filters the annotation to decide if the
ggregate queries need to be performed and plans accordingly
cf. the last row of Table 3 to examine different steps Crypt-
ICE takes to support aggregate queries). This all adds up to the
dditional overhead on the performance of the insert operations.
On the other hand; read, update, and delete operations do

ot deal with annotations at runtime and therefore they incur
ow performance overhead. Besides, the experiments conducted
n this evaluation perform read operations on the unique ob-
ect identifier generated by the application (i.e. ID). However,
he relative performance overhead can be considerably high if
nteractive search queries (e.g., equality search on non-identifier
olumns, full-text search, aggregate queries, etc.) are performed
ver encrypted data. Similarly, as update and delete operations
re also dependent on the read operation, we expect the rel-
tive performance overhead for such operations to be higher
f read operations are performed on all non-identifier columns.
nother interesting conclusion appears from the results that the
erformance overhead of CryptDICE decreases with the increase
n data size. This can be explained as follows: as the absolute
erformance overhead of CryptDICE is constant and the execution
ime of the baseline increases gradually with the increase in data
ize, the relative performance overhead of CryptDICE decreases
hen the data size increases (e.g., 1000K insert operations).
16
6. Related work

In the last few years, considerable research has been con-
ducted to mitigate the security challenges in NoSQL databases.
This section summarizes related work, which can be broadly
classified into two categories: (i) advanced data encryption tech-
niques, and (ii) systems and middleware for protecting sensitive
data. In Section 6.1, we give a brief overview of related work
on advanced data encryption techniques. Section 6.2 then de-
scribes recent research on systems and middleware for protecting
sensitive data, with a special emphasis on NoSQL databases.

6.1. Advanced data encryption techniques

Searchable encryption. The research on searchable encryption
has been initiated with the seminal work of Song et al. [46]. Fol-
lowing that, the security notions of the symmetric family of such
constructions have been defined thoroughly [47–49]. And, over
the last decade, these primitives have gone through tremendous
improvements in terms of (i) functionalities, e.g. conjunctive [50]
and disjunctive [51] queries, (ii) performance, e.g., data local-
ity [52,53], and last but not least (iii) security, e.g., forward and
backward privacy [54–56], and more.

In general, these schemes entail three high-level functions:
Token to generate search tokens based on a secret key, Query
to search the encrypted index using the generated token, and
Resolve to decrypt the search outcome. Our system, in particular,
the underpinning encryption component, abstracts away these
functionalities in a way that the majority of these encrypted
search constructions can be plugged in and employed by the
query rewriting module.

Homomorphic encryption. Some encryption schemes enable un-
trusted environments to operate on encrypted data without de-
crypting the values. These operations typically comprise multi-
plications and additions. Some schemes only support one of the
operations, which are called partially homomorphic encryption,
such as El Gamal [20] for an unbounded number of multiplica-
tions and Paillier [43] for an unbounded number of additions.
In 2009, Gentry proposed [21] the first fully homomorphic en-
cryption (FHE) scheme using lattice-based cryptography, which
can perform both operations. There have been tremendous re-
search effort to make FHE more efficient [57–59]. In a high-level
description, their execution flows have been investigated, and
therefore, our aggregation modules are compliant with their API
requirements [60], which means any of the algorithms can get
integrated into our system.

Property-preserving encryption. Different searchable encryption
constructions have been proposed based on the determinism
property of various cryptographic primitives [61–65]. Although
determinism introduces equality leakage compared to searchable
symmetric encryption, it enables a wide variety of operations
for practical systems. A different line of property-preserving
schemes aims at encrypted range queries. Order-preserving en-
cryption (OPE) was first introduced by Agarwal et al. [16], and
later on, formal security notions and better constructions have
been presented by other researchers [66–68]. The security of
such schemes has been improved by introduction of the order-
revealing encryption (ORE) schemes [17–19]. Although there have
been several attacks against the OPE and ORE schemes, efficient
encrypted range queries likely to require such primitives. There-
fore, the research to achieve more efficient and secure OPE/ORE
schemes is an on-going subject of research.

A. Rafique, D. Van Landuyt, E. Heydari Beni et al. Information Systems 96 (2021) 101671

d
t
[
a
a
A
o
e
k
s
e
T
t
c
i
g
d
d
w
l

E
(
O
e
a
s
l
C
d
w
i
d
e
m
g
c

Fig. 7. Total execution time in seconds to perform CRUD operations for 500K and 1000K encrypted invoices. The setup consists of 1 node MongoDB service deployed
and managed in a private IaaS cloud using OpenStack. The numbers (%) on top of the bars indicate the performance overhead introduced by CryptDICE for different
operations.
6.2. Systems and middleware for protecting sensitive data

Transparent database encryption. The majority of relational
atabases have built-in encrypted storage engines and support
ransparent data encryption (TDE), such as Oracle [69], MySQL
70], PostgreSQL [71] and MariaDB [72]. Likewise, most, but not
ll, enterprise NoSQL database products also offer TDE, such
s MongoDB [73], Apache Cassandra [74], Apache HBase [75],
mazon DynamoDB [76]. Almost all of the native TDE support
f these databases offers encryption at a coarse-grained key and
ncryption granularity. For example, they use one or very few
eys for the encryption of the entire database. In contrast, our
ystem focuses on client-centric key provisioning and offering
ncryption at the finest level of granularity, which is field level.
he enterprise edition of MongoDB (4.2) recently announced [77]
hat it supports field-level encryption. Moreover, DynamoDB En-
ryption SDK client [78] supports field-level data encryption, but
t is not natively a part of DynamoDB. Moreover, excluding Mon-
oDB client-side field-level data encryption, which only relies on
eterministic data encryption scheme for searching, none of these
atabases offer searchability and aggregation on encrypted data
hen encryption keys are managed per client at the application

evel.

ncrypted database systems. In recent years, several systems
e.g., CryptDB [23], SafeNoSQL [22], Seabed [24], Monomi [25],
paque [79], EnclaveDB [80], HardIDX [81], Enckv [26]) based on
ither relational or NoSQL databases have been proposed to query
nd compute on encrypted data. In this paper, we aim to design a
ecure data-access middleware with a special focus on enterprise
evel software development. In that regard, Alves et al. [37] and
loudProtect [82] present frameworks with a set of strictly pre-
efined schemes. SafeNoSQL [22] presents a generic framework
ith a modular and extensible design that enables data process-

ng over multiple cryptographic techniques applied on the same
atabase schema. DataBlinder [83] presents a distributed and
xtensible middleware architecture with conceptual abstraction
odels for searchable encryption. However, this paper aims to
o beyond the conceptual models and modularity of the ar-
hitecture. The key differentiating objective is the reification of
17
these concepts at the middleware and the programming language
level through annotations, e.g., within the JPA ecosystem. That
has a potential impact on the enterprise software development
community.

CryptDB [23] presents a practical encrypted database based on
MySQL by offering SQL-aware encryption techniques, adjustable
encryption (onion encryption), and chaining encryption keys de-
rived by users’ password. The majority of the server-side imple-
mentation in CryptDB is done as User Defined Functions (UDF). In
addition, CryptDB focuses mainly on relational databases, MySQL
in particular, and the query rewriting technique is based on SQL.
In contrast, our work aims at NoSQL databases (which are het-
erogeneous in data models) and uses JPQL as query rewriting ab-
straction. To perform complex computation, CryptDICE supports
both the database-side computation (UDF can be implemented
directly inside the database engine) and also the client-side com-
putation (the lightweight service of CryptDICE performs complex
computation inside the system and it has support for two modes
of execution: remote mode and local mode). Seabed [24] presents
big data analytics over encrypted datasets by an additive sym-
metric homomorphic encryption, which is prototyped on Apache
Spark. Monomi [25] employs per-row precomputation, space-
efficient encryption, grouped homomorphic addition, and pre-
filtering to securely execute analytical workloads over sensitive
data. These databases present different techniques to search and
perform efficient computation on encrypted data that are tailor-
made and strict to their architecture; however, we present a
middleware rather than a database, which encapsulates different
classes of techniques and it is not tied to a particular encrypted
search scheme. Opaque [79], EnclaveDB [80], and HardIDX [81]
use trusted execution environments, namely Intel SGX, to enable
encrypted analytics and searchable encryption by hiding access
patterns. Most of these research efforts either modify (or build on
top of) the existing databases or offer low-level system security.
In contrast, we present a software-only middleware approach to
provide a practical encrypted database from a software developer
perspective.

Middleware approaches. Prior work by Rafique et al. [84]

present PERSIST, a data access middleware which relies on the

A. Rafique, D. Van Landuyt, E. Heydari Beni et al. Information Systems 96 (2021) 101671

d
d
e
p
d
g
t
i
C
c
s
t
t
t
a
d
r
S
c
s
d
t
t
t
t
N
p
o
s
a
s
o
q
e

a
d
v
g
n
e
f
t

7

g
e
e
g
N
l
i
s
p
e
v
m
f
c
r

i
a
s
c

ata mapping strategy proposed in [85,86] to offer scalable and
ynamic support for encryption of sensitive data at different lev-
ls of granularity such as fields, rows, and tables. Alves et al. [37]
resent a framework for search and computation on encrypted
ata, they employ ORE and HOM as their underpinning crypto-
raphic primitives. However, their framework defines and fine-
unes a set of very specific cryptographic primitives and the focus
s not primarily on the data access middleware layer. Similarly,
loudProtect [82] is a middleware that transparently encrypts
lients’ data and relies solely on deterministic encryption for
earching. Heydari Beni et al. [83] present DataBlinder, a dis-
ributed middleware aiming at crypto agility by abstracting away
he cryptographic constructions and presenting three concep-
ual abstraction models for the leakage profiles, functionalities,
nd performance for both the security experts and software
evelopers. To do so, the middleware employs an adaptive and
eflective architecture such as [87,88] to reify these aspects.
afeNoSQL [22] presents a generic, modular, and extensible ar-
hitecture enabling data processing using various cryptographic
chemes applied on the same database schema for existing NoSQL
atabase engines. However, the primary focus of these architec-
ures is on integration with NoSQL databases and most impor-
antly, on the modularity and extensibility of the cryptographic
actics. CryptDICE, building on top of these future proof archi-
ecture contributions, aims to (i) support different categories of
oSQL databases (e.g., columnar, document oriented, etc.), (ii)
rovide much-needed support for encryption at a different level
f granularity (e.g., per table, per object, or per field), and (ii)
pecify how these abstraction models can be reified in a data
ccess middleware such as Hibernate, a programming language
uch as Java, and a query language such as JPQL. In addition, none
f these research efforts focus on the encrypted full-text search
ueries, which are not directly supported by the integrated data
ncryption schemes.
Client-side encryption for Amazon DynamoDB [78] presents

n application-level middleware for the encryption of sensitive
ata with a field-level granularity. However, it does not pro-
ide an encrypted search. Azure Always Encrypted database en-
ine [89] provides a protection mechanism for sensitive data
ot only through encryption but also via hardware enclaves. The
ngine is capable of deriving the value of initialization vectors (IV)
rom the content of data, and as a result, enables searchability via
he deterministic data encryption scheme.

. Conclusion

In this paper, we have proposed CryptDICE, a flexible and
eneric data access system that runs in a distributed fashion and
nsures fine-grained protection on application data. The system
nables the execution of different types of search and aggre-
ate queries over encrypted data for a wide range of different
oSQL databases with absolutely no modification in the under-
ying database engine and minimum changes by using the built-
n annotations to the client-side applications. The lightweight
ervice of CryptDICE reduces the management complexity of im-
lementing User Defined Functions (UDF) directly in the database
ngine for each underlying database technology. As such, the ser-
ice rather implements UDF in the application code and provides
igration transparency, i.e., enabling the service to be migrated

rom an on-premise environment to public clouds and perform
omplex computations next to the database engine in order to
ealize low-latency aggregate queries.

We have implemented a prototype of the proposed solution
n the context of a realistic industrial Software-as-a-Service (SaaS)
pplication, in order to evaluate different aspects of the CryptDICE
ystem. The evaluation results confirm that CryptDICE signifi-
antly reduces the development time and effort for enabling data
18
encryption and supporting different types of interactive secure
search queries. Moreover, it offers performance optimizations for
achieving low-latency aggregate queries. In addition, the per-
formance overhead induced by CryptDICE is also reported to
be modest. The preliminary evaluation we now present focuses
primarily on functional aspects, performance criteria, and latency
considerations. We will extend the observations of other im-
portant dimensions, such as reliability, resilience, and scalability
conditions, as future-work.

CRediT authorship contribution statement

Ansar Rafique: Conceptualization, Data Curation, Investi-
gation, Methodology, Software, Validation, Writing - Origi-
nal Draft Preparation, Writing - Review & Editing. Dimitri
Van Landuyt: Project Administration, Resources, Supervision,
Validation, Visualization, Writing - Review & Editing. Emad
Heydari Beni: Validation, Writing - Review & Editing. Bert
Lagaisse: Supervision, Validation, Writing - Review & Editing.
Wouter Joosen: Funding Acquisition, Supervision, Visualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This research is partially funded by the Research Fund KU
Leuven and the Cybersecurity Initiative Flanders (CIF) project.

References

[1] I. Arora, A. Gupta, Cloud databases: a paradigm shift in databases, Int. J.
Comput. Sci. Issues (IJCSI) 9 (4) (2012) 77.

[2] C. Curino, E.P.C. Jones, R.A. Popa, N. Malviya, E. Wu, S. Madden, H. Bal-
akrishnan, N. Zeldovich, Relational cloud: A database-as-a-service for the
cloud, 2011, https://sungsoo.github.io/articles/cmu-course-papers/CIDR11_
Paper33.pdf. [Last visited on September 09, 2020].

[3] O. Ünay, T.İ. Gündem, A survey on querying encrypted XML documents for
databases as a service, ACM SIGMOD Rec. 37 (1) (2008) 12–20.

[4] H. Hacigumus, B. Iyer, S. Mehrotra, Providing database as a service, in:
Proceedings 18th International Conference on Data Engineering, IEEE, 2002,
pp. 29–38.

[5] G. Feuerlicht, J. Pokornỳ, Can relational DBMS scale up to the cloud? in:
Information Systems Development, Springer, 2013, pp. 317–328.

[6] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears, Benchmark-
ing cloud serving systems with YCSB, in: Proceedings of the 1st ACM
Symposium on Cloud Computing, ACM, 2010, pp. 143–154.

[7] M. Ahmadian, F. Plochan, Z. Roessler, D.C. Marinescu, SecureNoSQL: An
approach for secure search of encrypted NoSQL databases in the public
cloud, Int. J. Inf. Manage. 37 (2) (2017) 63–74.

[8] J. Silver-Greenberg, M. Goldstein, N. Perlroth, Jpmorgan chase hack affects
76 million households, New York Times 2 (2014).

[9] N.E. Weiss, R.S. Miller, The target and other financial data breaches:
Frequently asked questions, in: Congressional Research Service, Prepared
for Members and Committees of Congress February, Vol. 4, 2015, p. 2015.

[10] B. Huang, S. Liang, D. Xu, Z. Wan, A homomorphic searching scheme for
sensitive data In NoSQL Database, in: 2018 IEEE Smart Data (SmartData),
IEEE, 2018, pp. 575–579.

[11] N. Gupta, R. Agrawal, NoSQL security, in: Advances in Computers, Vol. 109,
Elsevier, 2018, pp. 101–132.

[12] L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes, J. Abramov, Security issues in
NoSQL databases, in: 10th International Conference on Trust, Security and
Privacy in Computing and Communications, IEEE, 2011, pp. 541–547.

[13] R. Sellami, B. Defude, Using multiple data stores in the cloud: Challenges
and solutions, in: International Conference on Data Management in Cloud,
Grid and P2P Systems, Springer, 2013, pp. 87–98.

[14] M.-H. Shih, J. Chang, Design and analysis of high performance crypt-NoSQL,
in: 2017 IEEE Conference on Dependable and Secure Computing, IEEE,
2017, pp. 52–59.

http://refhub.elsevier.com/S0306-4379(20)30128-9/sb1
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb1
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb1
https://sungsoo.github.io/articles/cmu-course-papers/CIDR11_Paper33.pdf
https://sungsoo.github.io/articles/cmu-course-papers/CIDR11_Paper33.pdf
https://sungsoo.github.io/articles/cmu-course-papers/CIDR11_Paper33.pdf
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb3
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb3
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb3
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb4
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb4
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb4
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb4
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb4
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb5
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb5
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb5
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb6
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb6
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb6
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb6
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb6
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb7
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb7
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb7
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb7
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb7
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb8
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb8
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb8
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb9
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb9
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb9
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb9
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb9
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb10
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb10
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb10
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb10
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb10
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb11
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb11
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb11
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb12
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb12
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb12
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb12
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb12
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb13
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb13
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb13
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb13
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb13
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb14
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb14
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb14
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb14
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb14

A. Rafique, D. Van Landuyt, E. Heydari Beni et al. Information Systems 96 (2021) 101671
[15] X. Tian, B. Huang, M. Wu, A transparent middleware for encrypting
data in MongoDB, in: 2014 IEEE Workshop on Electronics, Computer and
Applications, IEEE, 2014, pp. 906–909.

[16] R. Agrawal, J. Kiernan, R. Srikant, Y. Xu, Order preserving encryption for
numeric data, in: Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, 2004, pp. 563–574.

[17] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, J. Zimmerman,
Semantically secure order-revealing encryption: Multi-input functional
encryption without obfuscation, in: Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Springer, 2015,
pp. 563–594.

[18] D. Cash, F.-H. Liu, A. O’Neill, M. Zhandry, C. Zhang, Parameter-hiding
order revealing encryption, in: International Conference on the Theory
and Application of Cryptology and Information Security, Springer, 2018,
pp. 181–210.

[19] N. Chenette, K. Lewi, S.A. Weis, D.J. Wu, Practical order-revealing encryp-
tion with limited leakage, in: International Conference on Fast Software
Encryption, Springer, 2016, pp. 474–493.

[20] T. ElGamal, A public key cryptosystem and a signature scheme based on
discrete logarithms, IEEE Trans. Inf. Theory 31 (4) (1985) 469–472.

[21] C. Gentry, Fully homomorphic encryption using ideal lattices, in: Proceed-
ings of the Forty-First Annual ACM Symposium on Theory of Computing,
2009, pp. 169–178.

[22] R. Macedo, J. Paulo, R. Pontes, B. Portela, T. Oliveira, M. Matos, R. Oliveira,
A practical framework for privacy-preserving NoSQL databases, in: 2017
IEEE 36th Symposium on Reliable Distributed Systems (SRDS), IEEE, 2017,
pp. 11–20.

[23] R.A. Popa, C.M.S. Redfield, N. Zeldovich, H. Balakrishnan, CryptDB: Pro-
tecting confidentiality with encrypted query processing, in: Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles,
in: SOSP 1́1, ACM, New York, NY, USA, 2011, http://dx.doi.org/10.1145/
2043556.2043566.

[24] A. Papadimitriou, R. Bhagwan, N. Chandran, R. Ramjee, A. Haeberlen,
H. Singh, A. Modi, S. Badrinarayanan, Big data analytics over encrypted
datasets with seabed, in: 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), 2016, pp. 587–602.

[25] S.L. Tu, M.F. Kaashoek, S.R. Madden, N. Zeldovich, Processing analyti-
cal queries over encrypted data, URL: https://vm-web.pdos.csail.mit.edu/
papers/tu-monomi-cr-vldb13.pdf. [Last visited on September 09, 2020].

[26] X. Yuan, Y. Guo, X. Wang, C. Wang, B. Li, X. Jia, Enckv: An encrypted key-
value store with rich queries, in: Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, 2017, pp. 423–435.

[27] E. Barbierato, M. Gribaudo, M. Iacono, Performance evaluation of
NoSQL big-data applications using multi-formalism models, Future Gener.
Comput. Syst. 37 (2014) 345–353.

[28] A. Turner, A. Fox, J. Payne, H.S. Kim, C-mart: Benchmarking the cloud, IEEE
Trans. Parallel Distrib. Syst. 24 (6) (2012) 1256–1266.

[29] R. Cattell, Scalable SQL and NoSQL data stores, ACM SIGMOD Rec. 39 (4)
(2011) 12–27.

[30] J.R. Lourenço, B. Cabral, P. Carreiro, M. Vieira, J. Bernardino, Choosing the
right NoSQL database for the job: a quality attribute evaluation, J. Big Data
2 (1) (2015) 18.

[31] L. Wiese, T. Waage, M. Brenner, CloudDBGuard: A framework for encrypted
data storage in NoSQL wide column stores, Data Knowl. Eng. (2019)
101732.

[32] A.M. Eassa, M. Elhoseny, H.M. El-Bakry, A.S. Salama, NoSQL Injection Attack
Detection in Web Applications Using RESTful Service, Program. Comput.
Softw. 44 (6) (2018) 435–444.

[33] K. Sahatqija, J. Ajdari, X. Zenuni, B. Raufi, F. Ismaili, Comparison between
relational and NOSQL databases, in: 2018 41st International Conven-
tion on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), IEEE, 2018, pp. 0216–0221.

[34] T. Müller, F.C. Freiling, A. Dewald, TRESOR Runs Encryption Securely
Outside RAM, in: USENIX Security Symposium, Vol. 17, 2011.

[35] H. Shafagh, A. Hithnawi, A. Droescher, S. Duquennoy, W. Hu, Talos:
Encrypted query processing for the Internet of Things, in: Proceedings of
the 13th ACM Conference on Embedded Networked Sensor Systems, in:
SenSys ’15, ACM, New York, NY, USA, 2015, pp. 197–210, http://dx.doi.
org/10.1145/2809695.2809723, URL: http://doi.acm.org/10.1145/2809695.
2809723.

[36] M. Naveed, S. Kamara, C.V. Wright, Inference attacks on property-
preserving encrypted databases, in: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, ACM, 2015, pp.
644–655.

[37] P.G. Alves, D.F. Aranha, A framework for searching encrypted databases, J.
Internet Serv. Appl. 9 (1) (2018) 1.

[38] G. Yubin, Z. Liankuan, L. Fengren, L. Ximing, A solution for privacy-
preserving data manipulation and query on NoSQL database, J. Comput.
8 (6) (2013) 1427–1432.
19
[39] S.S. Sathya, P. Vepakomma, R. Raskar, R. Ramachandra, S. Bhattacharya, A
review of homomorphic encryption libraries for secure computation, 2018,
arXiv preprint arXiv:1812.02428.

[40] J. Philipps, B. Rumpe, Refinement of pipe-and-filter architectures, in:
International Symposium on Formal Methods, Springer, 1999, pp. 96–115.

[41] A. Rafique, D. Van Landuyt, B. Lagaisse, W. Joosen, On the performance
impact of data access middleware for NoSQL data stores: a study of
the trade-off between performance and migration cost, IEEE Trans. Cloud
Comput. 6 (3) (2015) 843–856.

[42] kunerd, JPaillier, 2020, https://github.com/kunerd/jpaillier. [Last visited on
January 13, 2020].

[43] P. Paillier, Public-key cryptosystems based on composite degree residuosity
classes, in: International Conference on the Theory and Applications of
Cryptographic Techniques, Springer, 1999, pp. 223–238.

[44] B. Thorne, et al., A Java library for Paillier partially homomorphic en-
cryption based on python-paillier, 2017, https://github.com/n1analytics/
javallier.

[45] Peter Olson, BigInteger.js, 2020, https://github.com/peterolson/BigInteger.
js/. [Last visited on May 18, 2020].

[46] D.X. Song, D. Wagner, A. Perrig, Practical techniques for searches on
encrypted data, in: Proceeding 2000 IEEE Symposium on Security and
Privacy. S&P 2000, IEEE, 2000, pp. 44–55.

[47] R. Curtmola, J. Garay, S. Kamara, R. Ostrovsky, Searchable symmetric
encryption: improved definitions and efficient constructions, J. Comput.
Secur. 19 (5) (2011) 895–934.

[48] E.-J. Goh, et al., Secure indexes, in: IACR Cryptology ePrint Archive, Vol.
2003, 2003, p. 216.

[49] S. Kamara, C. Papamanthou, T. Roeder, Dynamic searchable symmetric
encryption, in: Proceedings of the 2012 ACM Conference on Computer and
Communications Security, 2012, pp. 965–976.

[50] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, M. Steiner,
Highly-scalable searchable symmetric encryption with support for boolean
queries, in: Annual Cryptology Conference, Springer, 2013, pp. 353–373.

[51] S. Kamara, T. Moataz, Boolean searchable symmetric encryption with
worst-case sub-linear complexity, in: Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Springer, 2017,
pp. 94–124.

[52] D. Cash, J. Jaeger, S. Jarecki, C.S. Jutla, H. Krawczyk, M.-C. Rosu, M. Steiner,
Dynamic searchable encryption in very-large databases: data structures
and implementation, in: NDSS, Vol. 14, Citeseer, 2014, pp. 23–26.

[53] D. Cash, S. Tessaro, The locality of searchable symmetric encryption,
in: Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Springer, 2014, pp. 351–368.

[54] R. Bost, oϕoς : Forward secure searchable encryption, in: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 1143–1154.

[55] M. Etemad, A. Küpçü, C. Papamanthou, D. Evans, Efficient dynamic
searchable encryption with forward privacy, in: Proceedings on Privacy
Enhancing Technologies, Vol. 2018, Sciendo, 2018, pp. 5–20.

[56] J. Ghareh Chamani, D. Papadopoulos, C. Papamanthou, R. Jalili, New
constructions for forward and backward private symmetric searchable
encryption, in: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018.

[57] Z. Brakerski, C. Gentry, V. Vaikuntanathan, Fully Homomorphic Encryption
without Bootstrapping, 2011, Cryptology ePrint Archive, Report 2011/277,
https://eprint.iacr.org/2011/277.

[58] I. Chillotti, N. Gama, M. Georgieva, M. Izabachène, TFHE: fast fully
homomorphic encryption over the torus, J. Cryptol. 33 (1) (2020) 34–91.

[59] C. Gentry, S. Halevi, N.P. Smart, Fully homomorphic encryption with
polylog overhead, in: Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Springer, 2012, pp. 465–482.

[60] M.R. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, S.
Halevi, J. Hoffstein, K. Laine, K.E. Lauter, et al., Homomorphic encryption
standard., IACR Cryptol. ePrint Arch. 2019 (2019) 939.

[61] M. Bellare, A. Boldyreva, A. O’Neill, Efficiently-searchable and deterministic
asymmetric encryption, Cryptol. ePrint (2006).

[62] M. Bellare, A. Boldyreva, A. O’Neill, Deterministic and efficiently searchable
encryption, in: Annual International Cryptology Conference, Springer, 2007,
pp. 535–552.

[63] M. Bellare, M. Fischlin, A. O’Neill, T. Ristenpart, Deterministic encryption:
Definitional equivalences and constructions without random oracles, in:
Annual International Cryptology Conference, Springer, 2008, pp. 360–378.

[64] A. Boldyreva, S. Fehr, A. O’Neill, On notions of security for deterministic
encryption, and efficient constructions without random oracles, in: Annual
International Cryptology Conference, Springer, 2008, pp. 335–359.

[65] F. Hahn, F. Kerschbaum, Searchable encryption with secure and efficient
updates, in: Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, 2014.

[66] A. Boldyreva, N. Chenette, A. O’Neill, Order-preserving encryption revisited:
Improved security analysis and alternative solutions, in: Annual Cryptology
Conference, Springer, 2011, pp. 578–595.

http://refhub.elsevier.com/S0306-4379(20)30128-9/sb15
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb15
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb15
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb15
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb15
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb17
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb17
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb17
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb17
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb17
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb17
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb17
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb17
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb17
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb18
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb18
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb18
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb18
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb18
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb18
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb18
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb19
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb19
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb19
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb19
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb19
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb20
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb20
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb20
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb22
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb22
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb22
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb22
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb22
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb22
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb22
http://dx.doi.org/10.1145/2043556.2043566
http://dx.doi.org/10.1145/2043556.2043566
http://dx.doi.org/10.1145/2043556.2043566
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb24
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb24
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb24
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb24
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb24
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb24
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb24
https://vm-web.pdos.csail.mit.edu/papers/tu-monomi-cr-vldb13.pdf
https://vm-web.pdos.csail.mit.edu/papers/tu-monomi-cr-vldb13.pdf
https://vm-web.pdos.csail.mit.edu/papers/tu-monomi-cr-vldb13.pdf
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb27
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb27
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb27
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb27
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb27
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb28
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb28
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb28
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb29
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb29
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb29
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb30
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb30
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb30
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb30
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb30
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb31
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb31
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb31
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb31
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb31
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb32
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb32
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb32
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb32
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb32
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb33
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb33
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb33
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb33
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb33
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb33
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb33
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb34
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb34
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb34
http://dx.doi.org/10.1145/2809695.2809723
http://dx.doi.org/10.1145/2809695.2809723
http://dx.doi.org/10.1145/2809695.2809723
http://doi.acm.org/10.1145/2809695.2809723
http://doi.acm.org/10.1145/2809695.2809723
http://doi.acm.org/10.1145/2809695.2809723
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb36
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb36
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb36
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb36
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb36
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb36
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb36
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb37
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb37
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb37
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb38
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb38
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb38
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb38
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb38
http://arxiv.org/abs/1812.02428
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb40
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb40
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb40
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb41
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb41
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb41
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb41
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb41
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb41
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb41
https://github.com/kunerd/jpaillier
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb43
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb43
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb43
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb43
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb43
https://github.com/n1analytics/javallier
https://github.com/n1analytics/javallier
https://github.com/n1analytics/javallier
https://github.com/peterolson/BigInteger.js/
https://github.com/peterolson/BigInteger.js/
https://github.com/peterolson/BigInteger.js/
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb46
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb46
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb46
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb46
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb46
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb47
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb47
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb47
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb47
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb47
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb48
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb48
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb48
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb50
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb50
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb50
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb50
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb50
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb51
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb51
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb51
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb51
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb51
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb51
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb51
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb52
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb52
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb52
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb52
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb52
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb53
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb53
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb53
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb53
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb53
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb55
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb55
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb55
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb55
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb55
https://eprint.iacr.org/2011/277
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb58
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb58
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb58
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb59
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb59
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb59
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb59
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb59
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb60
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb60
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb60
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb60
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb60
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb61
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb61
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb61
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb62
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb62
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb62
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb62
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb62
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb63
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb63
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb63
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb63
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb63
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb64
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb64
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb64
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb64
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb64
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb66
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb66
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb66
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb66
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb66

A. Rafique, D. Van Landuyt, E. Heydari Beni et al. Information Systems 96 (2021) 101671
[67] F. Kerschbaum, Frequency-hiding order-preserving encryption, in: Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015, pp. 656–667.

[68] Z. Liu, X. Chen, J. Yang, C. Jia, I. You, New order preserving encryption
model for outsourced databases in cloud environments, J. Netw. Comput.
Appl. 59 (2016) 198–207.

[69] Oracle, Oracle TDE, 2020, https://docs.oracle.com/database/121/ASOAG/
introduction-to-transparent-data-encryption.htm. [Last visited on April 30,
2020].

[70] MySQL, MySQL Transparent Data Encryption, 2020, https://www.mysql.
com/products/enterprise/tde.html. [Last visited on April 30, 2020].

[71] PostgreSQL, PostgreSQL Transparent Data Encryption, 2020, https://wiki.
postgresql.org/wiki/Transparent_Data_Encryption. [Last visited on April 30,
2020].

[72] MariaDB, Data-at-Rest Encryption, 2020, https://mariadb.com/kb/en/data-
at-rest-encryption-overview/. [Last visited on April 30, 2020].

[73] MongoDB, Encryption at Rest, 2020, https://docs.mongodb.com/manual/
core/security-encryption-at-rest/. [Last visited on April 30, 2020].

[74] DataStax, Apache cassandra transparent data encryption, 2020,
https://docs.datastax.com/en/security/6.7/security/secEncryptEnable.html.
[Last visited on April 30, 2020].

[75] Apache HBase, Securing access to your data, 2020, https://hbase.apache.
org/book.html. [Last visited on April 30, 2020].

[76] AWS, DynamoDB Encryption at Rest, 2020, https://docs.aws.amazon.
com/amazondynamodb/latest/developerguide/EncryptionAtRest.html. [Last
visited on April 30, 2020].

[77] MongoDB, Client-side field level encryption, 2020, https://docs.mongodb.
com/manual/core/security-client-side-encryption/. [Last visited on April
30, 2020].

[78] Amazon Web Services, What is the Amazon DynamoDB Encryption
Client? 2020, https://docs.aws.amazon.com/dynamodb-encryption-client/
latest/devguide/what-is-ddb-encrypt.html. [Last visited on April 30, 2020].

[79] W. Zheng, A. Dave, J.G. Beekman, R.A. Popa, J.E. Gonzalez, I. Stoica, Opaque:
An oblivious and encrypted distributed analytics platform, in: 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17),
2017, pp. 283–298.
20
[80] C. Priebe, K. Vaswani, M. Costa, Enclavedb: A secure database using SGX,
in: 2018 IEEE Symposium on Security and Privacy (SP), IEEE, 2018, pp.
264–278.

[81] B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum, A.-R. Sadeghi, Har-
dIDX: Practical and secure index with SGX, in: IFIP Annual Conference on
Data and Applications Security and Privacy, Springer, 2017, pp. 386–408.

[82] M.H. Diallo, B. Hore, E.-C. Chang, S. Mehrotra, N. Venkatasubramanian,
Cloudprotect: managing data privacy in cloud applications, in: 2012
IEEE Fifth International Conference on Cloud Computing, IEEE, 2012, pp.
303–310.

[83] E.H. Beni, B. Lagaisse, W. Joosen, A. Aly, M. Brackx, DataBlinder: A dis-
tributed data protection middleware supporting search and computation
on encrypted data, in: Proceedings of the 20th International Middleware
Conference Industrial Track, 2019, pp. 50–57.

[84] A. Rafique, D. Van Landuyt, W. Joosen, Persist: Policy-based data manage-
ment middleware for multi-tenant SaaS leveraging federated cloud storage,
J. Grid Comput. 16 (2) (2018) 165–194.

[85] A. Rafique, D. Van Landuyt, V. Reniers, W. Joosen, Leveraging NoSQL for
scalable and dynamic data encryption in multi-tenant SaaS, in: 2017 IEEE
Trustcom/BigDataSE/ICESS, IEEE, 2017.

[86] A. Rafique, D. Van Landuyt, V. Reniers, W. Joosen, Towards scalable and
dynamic data encryption for multi-tenant SaaS, in: Proceedings of the
Symposium on Applied Computing, 2017.

[87] E.H. Beni, B. Lagaisse, W. Joosen, WF-Interop: adaptive and reflective
rest interfaces for interoperability between workflow engines, in: Pro-
ceedings of the 14th International Workshop on Adaptive and Reflective
Middleware, 2015, pp. 1–6.

[88] E.H. Beni, B. Lagaisse, W. Joosen, Adaptive and reflective middleware for
the cloudification of simulation & optimization workflows, in: Proceedings
of the 16th Workshop on Adaptive and Reflective Middleware, 2017, pp.
1–6.

[89] Microsoft, Always encrypted engine, 2020, https://docs.microsoft.com/en-
us/sql/relational-databases/security/encryption/always-encrypted-
database-engine?view=sql-server-ver15. [Last visited on April 30, 2020].

http://refhub.elsevier.com/S0306-4379(20)30128-9/sb68
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb68
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb68
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb68
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb68
https://docs.oracle.com/database/121/ASOAG/introduction-to-transparent-data-encryption.htm
https://docs.oracle.com/database/121/ASOAG/introduction-to-transparent-data-encryption.htm
https://docs.oracle.com/database/121/ASOAG/introduction-to-transparent-data-encryption.htm
https://www.mysql.com/products/enterprise/tde.html
https://www.mysql.com/products/enterprise/tde.html
https://www.mysql.com/products/enterprise/tde.html
https://wiki.postgresql.org/wiki/Transparent_Data_Encryption
https://wiki.postgresql.org/wiki/Transparent_Data_Encryption
https://wiki.postgresql.org/wiki/Transparent_Data_Encryption
https://mariadb.com/kb/en/data-at-rest-encryption-overview/
https://mariadb.com/kb/en/data-at-rest-encryption-overview/
https://mariadb.com/kb/en/data-at-rest-encryption-overview/
https://docs.mongodb.com/manual/core/security-encryption-at-rest/
https://docs.mongodb.com/manual/core/security-encryption-at-rest/
https://docs.mongodb.com/manual/core/security-encryption-at-rest/
https://docs.datastax.com/en/security/6.7/security/secEncryptEnable.html
https://hbase.apache.org/book.html
https://hbase.apache.org/book.html
https://hbase.apache.org/book.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.mongodb.com/manual/core/security-client-side-encryption/
https://docs.mongodb.com/manual/core/security-client-side-encryption/
https://docs.mongodb.com/manual/core/security-client-side-encryption/
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/what-is-ddb-encrypt.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/what-is-ddb-encrypt.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/what-is-ddb-encrypt.html
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb79
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb79
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb79
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb79
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb79
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb79
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb79
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb80
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb80
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb80
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb80
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb80
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb81
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb81
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb81
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb81
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb81
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb82
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb82
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb82
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb82
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb82
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb82
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb82
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb84
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb84
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb84
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb84
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb84
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb85
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb85
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb85
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb85
http://refhub.elsevier.com/S0306-4379(20)30128-9/sb85
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-ver15

	CryptDICE: Distributed data protection system for secure cloud data storage and computation
	Introduction
	Motivation
	Billing-as-a-Service SaaS application
	NoSQL databases
	Data encryption schemes
	Problem statement

	CryptDICE: a distributed data protection system
	Application layer
	Secure data access layer
	Data management
	Query execution

	NoSQL abstraction API layer
	Deployment models

	Prototype implementation
	Evaluation
	Application setup
	Cost of enabling data encryption support
	Comparative analysis and performance evaluation of implementing database function
	Experimental setup
	Results
	Comparative analysis

	Performance impact
	Experimental setup
	Performance results

	Related work
	Advanced data encryption techniques
	Systems and middleware for protecting sensitive data

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

