
DataBlinder: A distributed data protection middleware
supporting search and computation on encrypted data

Emad Heydari Beni, Bert Lagaisse,

Wouter Joosen

{firstname.lastname}@cs.kuleuven.be
imec-DistriNet, KU Leuven, Belgium

Abdelrahaman Aly

abdelrahaman.aly@esat.kuleuven.be
imec-COSIC, KU Leuven, Belgium

Michael Brackx

michael.brackx@unifiedpost.com
UnifiedPost, Belgium

Abstract
Business application owners want to outsource data storage, includ-

ing sensitive data, to the public cloud for economical reasons. This

is often challenging since these businesses are and remain respon-

sible for regulatory compliance and data protection, even though

cloud providers may do their best to offer (data) protection. Mean-

while, data protection techniques evolve and get better because of

continuous research and improvement of advanced encryption. Nu-

merous cryptographic tactics have been proposed, e.g., searchable

symmetric encryption (SSE) and homomorphic encryption (HE),

that support search and aggregation functions on encrypted data.

Each of these tactics has a trade-off between security, performance
and functionality, but there is no one-size-fits-all solution. For the

application developer, the underpinning concepts of these tactics

are complex to comprehend, complex to integrate in a distributed

application, and prone to implementation mistakes.

In this paper we present DataBlinder, a distributed data access

middleware that provides crypto agility by means of configurable

fine-grained data protection at the application level. DataBlinder

supports adaptive runtime selection of data protection tactics, and

offers a plugin architecture for such tactics based on a key ab-

straction model for protection level, performance and supported

query functionality. We have developed this middleware in close

collaboration with businesses that face these challenges and offer

cloud-based applications in e-finance, and e-health, by implement-

ing and integrating state-of-the-art cryptographic schemes to Dat-

aBlinder. This paper illustrates the case of medical data protection

with FHIR-compliant [30] medical data.

CCS Concepts • Security and privacy → Management and
querying of encrypted data; • Information systems → Mid-
dleware for databases.

Keywords security and privacy, middleware, data protection

ACM Reference Format:
Emad Heydari Beni, Bert Lagaisse, Wouter Joosen, Abdelrahaman Aly,

and Michael Brackx. 2019. DataBlinder: A distributed data protection mid-

dleware supporting search and computation on encrypted data. In 20th
International Middleware Conference Industrial Track (Middleware Industry
’19), December 9–13, 2019, Davis, CA, USA.ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3366626.3368132

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or

a fee. Request permissions from permissions@acm.org.

Middleware Industry ’19, December 9–13, 2019, Davis, CA, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7041-7/19/12. . . $15.00

https://doi.org/10.1145/3366626.3368132

1 Introduction
Software service providers use public cloud computing infrastruc-

ture to expand their computational capabilities and storage capacity.

Outsourcing customer data to the public cloud is not always feasible

for all domains of industry, especially the healthcare sector. The

reason lies in the fact that a significant amount of their customer

data is sensitive. Data protection regulations trigger companies to

further enrich their security countermeasures to protect sensitive

data, notably personally identifiable information. For instance, reg-

ulations oblige healthcare companies and organizations to notify

the authorities regarding any data breach of unsecured protected

health information (e.g., GDPR [53] and the HITECH Act [45, 46]).

They are thus skeptical about employing cloud-based infrastructure

and services, in particular, for storage of their critical data.

Healthcare providers would be forced to deploy data protection
mechanisms that go beyond encryption at rest or transmission. The

state-of-practice data protection at rest using standard encryption is

insufficient as software services are required to perform operations

on encrypted data. They should be able to execute queries like:

• finding the patient with a particular gastric cancer who was

admitted to the hospital in 12/05/2012 (boolean search),

• calculating the average heart rate of a patient (aggregate), or

• the number of times that the nurses refilled Doxycycline for

a patient (aggregated search).

Latest advances. Researchers and practitioners have proposed

many searchable encryption (SE) tactics and data protection sys-

tems for enabling search and computation on sensitive data in

untrusted environments. Followed by Song et. al [54], a prominent

body of research has been dedicated to symmetric SE (SSE). The

research efforts have focused on defining security notions (e.g.,

IND-CKA2 [18]), building updatable and scalable schemes [7, 8, 12],

optimal locality of encrypted indexes [12, 14, 19], and more complex

functionalities such as boolean search [13, 35]. A more practical, al-

beit less protective mechanisms, are based on property-preserving

encryption (PPE), e.g., deterministic encryption (DET) [2], order-

preserving encryption (OPE) [1, 4] and order-revealing encryption

(ORE) [5] schemes. Furthermore, homomorphic encryption (HE)

schemes allow us to operate, i.e., addition and/or multiplication,

directly over encrypted data. HE schemes provide either addition

or multiplication e.g., Paillier [48] and ElGamal [21]. Somewhat HE

(SHE) and Fully HE (FHE) offer some combination of both at the

cost of performance e.g., BGV [9] and TFHE [16].

Each of these tactics attempts to find a trade-off between security,
performance and functionality. For example, encrypting the whole

database (AES128) without searchability in mind provides us with a

high degree of security but falls short of performance. Some tactics

leak less information than others; among them, there are some

with sub-linear search complexity. Each of these schemes offers

different functionalities (e.g. equality, (con/dis)junction, etc.). Lastly,

https://doi.org/10.1145/3366626.3368132
https://doi.org/10.1145/3366626.3368132

Middleware Industry ’19, December 9–13, 2019, Davis, CA, USA Heydari Beni, et al.

these advanced cryptographic constructions typically have complex

designs leading to adoption difficulties by practitioners.

Challenges. There are several challenges for the development

and application-level integration of such data protection tactics:

(i) there is no one-size-fits-all cryptographic scheme which maxi-

mizes all three aspects of the security, performance, and function-

ality trade-off; (ii) integrating data protection tactics in the form

of libraries to heterogeneous and polyglot software, e.g., microser-

vice architectures, is prone to mistakes because such systems are

developed using various ecosystems of programming languages;

(iii) the underpinning concepts and implementation details of cryp-

tographic constructions used in data protection tactics are mostly

complex for application developers; in other words, choosing a

right scheme as well as a secure and correct implementation are

also prone to mistakes; moreover, (iv) developing and incorporating

new cryptographic schemes in an existing software stack is not a

trivial and straightforward task for cryptographers.

Contributions. In this paper we present DataBlinder, a dis-

tributed data-access middleware that encapsulates the complexity

of data protection tactics. This middleware was developed in the

context of an industrial applied research project [32] in close collab-

oration with software service providers. It enables software service

providers to seamlessly outsource sensitive data to the cloud-based

services and yet be able to operate on it. The contributions are:

Adaptive selection of data protection tactics. We present an ab-

straction model to reify the data protection concepts, allowing

application developers to request for their desired protection level

and types of queries. The middleware accordingly selects appro-

priate tactics satisfying the requirements presented in the policies,

and it adaptively loads the right implementation at runtime.

Extensible and pluggable architecture. Data protection tactics are

subject to change to be more efficient, more secure and/or more ex-

pressive. Inspired by the comprehensive categorisation of Fuller et

al. [24], we present an abstraction model for data protection tactics

to reify their leakage profile, performance metrics and operations.

As a result, tactic developers are provided with a set of interfaces

based on the required operations using the Service Provider Inter-

face (SPI) pattern, through which they plug in new tactics.

Recent research efforts have attempted to design and build secure

database systems, such as CryptDB [52], Blind Seer [49], OSPIR-

OXT [12, 13, 22], Arx [3], SisoSPIR [34], EncKV [56], etc. These

systems employed different cryptographic constructions, such as

SSE, various types of PPE, hardware-assisted approaches based

on Trusted Execution Environments (TEEs), Oblivious RAM, and

so on. The two key differentiating goals of our contributions in

comparison to the prior research are (1) presenting an architecture

enabling the software service providers to configure a notion of

security with respect to their required operation, and (2) facilitating

the current and future tactic extension process, unlike other systems

that focused only on application developers and the cloud providers;

therefore, our design is extensible and not tied to any specific tactic.

More importantly, the adaptive and pluggable architecture take us

one step closer to crypto agility, i.e., the ability to plug and play

cryptographic schemes depending on their evolution in time.

We validated the architecture by implementing several state-of-

the-art data tactics leveraging our SPI’s, and evaluated on FHIR-

compliant [30] medical data. Our performance evaluations show

that DataBlinder has limited impact on overall performance.

2 Background
Over the past years, researchers and practitioners attempted to

make practical SE constructions at the cost of allowing limited and

defined information leakage, and yet retaining security in both the

snapshot and persistent adversarial model. The snapshot model

means the adversary obtains a snapshot of the secure index and the

database, a well-motivated model for data breaches in the industry.

The persistent model assumes that the adversary can observe all

operations of the cloud server but without any interference.

Searchable encryption (SE). These schemes generally enable

cloud providers to search for user-requested keywords on encrypted

data without knowing the search word content and the plaintext

data. These constructions are typically built on top secure indexes

that reveal no information (or formally defined leakage, also called

leakage profile) about the content of search words and data itself.

In brief, they typically start with a setup protocol. This protocol

generates the required keys, builds the initial index and prepares

the cloud and local data stores. Next, the query protocol performs

the search query by generating trapdoors (also called tokens) at

the application side, which ideally reveal nothing about the search

term. Using the trapdoors, the cloud provider can query the secure

index by running an algorithm as a part of the search protocol

and provide the querier with the encrypted document identifiers.

Dynamic schemes include an update protocol for addition, deletion,

and modification of the encrypted documents. An example query
can be searching for patients’ details such as their health problems.

Range queries on encrypted data. The main goal of such

schemes is to allow cloud providers to compare ciphertexts without

decryption by applying a comparison function. That enables the

SE-based systems to build more complex queries such as range

queries. Although the practical SE constructions built upon these

primitives are recently subject to attacks [28, 29, 37, 43], they are

still an ongoing research subject. An example query can be searching
for patients’ health problems between particular date ranges.

Homomorphic encryption (HE). Homomorphic encryption

schemes encrypt data in a way that their underpinning mathemat-

ical properties enable the applications, in our setting the cloud

providers, to perform certain operations on encrypted data such

as addition or multiplication. Note that any function can be built

as an arithmetic circuit, using solely addition and multiplication

gates. The downside is that FHE or even SHE schemes that are

capable to provide both, report poor performance in terms of com-

putation and storage. Semi Homomorphic schemes, however are

considerably faster and have been commonly used in schemes that

require arithmetic or geometric aggregation. An example query can
be calculation of the average heart rates or body mass index (BMI).

3 Conceptual abstraction models
In this section, we elaborate on our two conceptual abstraction

models: the data protection tactic model to abstract and reify different
generic concepts found in most tactics, and the data access model
to enable configurable tactic selection at run-time.

3.1 An abstraction model for data protection tactics
Each document is composed of fields. For example, a health record

document may contain several fields such as a description, a sick-

ness type and a numeric value indicating a measurable parameter

like blood pressure. To protect sensitive values of the fields and

DataBlinder Middleware Industry ’19, December 9–13, 2019, Davis, CA, USA

yet offer certain operations to clients, advanced data protection

tactics are used. Each tactic typically offers very limited number of

operations, and as a result, a field employs multiple tactics to satisfy

functional requirements of an application. As depicted in Fig. 1,

a tactic has a set of internal operations. Each of these operations

comes with a leakage profile and several performance metrics. Our

abstraction model is inspired by the recent SoK paper of Fuller et

al. [24] published in IEEE Security and Privacy 2017.

Tactic operations. Tactics include one or several operations

[24]. In general, (i) the init operation to set up cryptographic prim-

itives and initial provisioning of data structures and databases,

(ii) the update operation for dynamic tactics to add, update and

delete documents, and (iii) the query operations to perform tac-

tic-specific functionalities such as boolean search.

Leakage profile.Data protection tactics in such systems rely on

secure data structures, e.g., an encrypted index, to facilitate data re-

trieval in an efficient way. These systems, notably their constitutive

data structures, are susceptible of leaking (meta-)information. For

example, a commonly used structure is encrypted inverted index; a

leakage could be the result size of every possible search word. There

are a wide range of leakage profiles with different levels of severity.

Encrypted indexes usually contain information about searchable

keywords and document identifiers. Searchable keywords are de-

rived from the content of the documents. Document identifiers

uniquely point to the documents in a database.

Figure 1. Abstraction model of data protection tactics for tactic

providers

Prior work presented various formal security definitions for

SE [6, 18, 26], and other work categorised the leakage levels [11].We

employed the leakage taxonomy presented by Fuller et al. [24] for

the reification of this concept due to its generality and applicability.

To present a middleware solution, having a generic classifica-

tion of leakage profiles does not capture all specific cases for each

operation. For example, the update operations (create, delete, and

update) are sensitive. They might leak information about the future

or the past; certain leakages occur prior to any query in the setup

time (having a snapshot of the database) or at query time such as

boolean queries. The pragmatic reification of data protection level

in a data-access middleware motivates the idea of presenting the

leakage profiles on a per-operation basis.

The leakage level of data protection tactics should be concretely

categorised into five levels [24]: (i) structure, i.e. nothing is leaked
except the size of the entire data structure or things which can be

hidden by padding, (ii) identifiers, i.e. past and future access patterns
of identifiers are leaked, (iii) predicates, i.e. complex query predicates

leak information such as intersection of a boolean query with a

known range, (iv) equalities, i.e. which objects have the same value

in the system, and (v) order, i.e. the numerical and lexicographic

order of the objects are leaked. The leakage level of order is the
highest, and structure is the lowest (the most secure one).

Performance metrics. Each tactic operation also comes with

a performance cost impacting clients’ experience. As illustrated in

Fig. 1, the performance of data protection tactics can be measured

and quantified by certain types of metrics related to the under-

pinning algorithms, network, and storage overheads. Tactics can

employ various algorithmic designs to securely execute operations,

which in turn may affect performance differently, e.g., tree based

search vs. exhaustive search. Those decisions consequently have

impact on networking infrastructure in terms of data sent and re-

ceived between clients and providers. Besides, tactics may have

severe impacts on the locality of objects, read efficiency, the size of

data storage both at the client and the server side.

3.2 An abstraction model for protected data access
Data protection tactics should be applied to documents with per-

field granularity. Fig. 2 illustrates the data access abstraction model

for sensitive fields, which primarily includes (i) which data-access

and aggregate operations can be performed on a field, and (ii) up

to what level sensitive fields are protected.

Each field of a document can be annotated with the model illus-

trated in Fig. 2. For instance, consider a medical document contain-

ing a patient’s age. We can select its sensitivity level, and assign

a Class 2 protection level (explained later). We can then config-

ure what operations are needed, in this case Average and Equality
Search. The middleware employs the right implementations at run-

time accordingly in order to meet the client’s requirements.

Figure 2. Data access model of the sensitive fields for application

developers

Query functionality. A data access middleware should in gen-

eral offer all required query functionalities to the client applications.

The core functionalities of the query interfaces rely on key opera-

tions of associated arrays [27, 42] and basic functions of persistent

storage systems [41], which are namely (i) create, (ii) read, (iii) up-

date, and (iv) delete. The read operation goes beyond fetching a

document; it comprises more complex search operations with pred-

icates specifying conditions such as (i) equality, (ii) boolean queries

Middleware Industry ’19, December 9–13, 2019, Davis, CA, USA Heydari Beni, et al.

(conjunction, disjunction and negation), (iii) range, and (iv) oth-

ers. These operations can be combined with aggregate functions

such as sum, average, count, maximum, minimum, and so on. Each

operation could be mapped to one or more data protection tactics.

Data protection level. Unlike the model of data protection

tactic in which leakage profiles are specified per operation, the data

access model specifies protection level per field. In other words, the

protection level of a field is equal to the tactic with the weakest

guarantees regardless of the strength of other tactics applied to it

(i.e. a chain is only as strong as its weakest link.). We classify data

protection tactics into five classes (Class1,..., Class5) of protection

guarantees. Each of these classes corresponds to its counterpart in

the data protection model. Class1 has the least leakage.

4 Architecture and implementation
In this section, we present an overview of the DataBlinder middle-

ware architecture, and we further describe the extensibility and

pluggability of the architecture by introducing tactic commonali-

ties and service provider interfaces (SPI). The setting consists of a

trusted zone which is the application owner’s datacenter, and an

untrusted zone composed of external cloud providers (see Fig. 3).

30/08/2019 draw.io

chrome-extension://pebppomjfocnoigkeepgbmcifnnlndla/index.html 1/1

<<device>>
Data Protection Gateway

<<middleware>>
DataBlinder

<<storage system>>
Local DB and Cache

Policy

<<device>>

<<device>>

...

<<software>>
Application

<<software>>
Application

Schema

Entities
Keys

...
<<device>>

<<middleware>>
DataBlinder

Application owner's data center

Cloud provider

 Trusted Zone Untrusted Zone

<<device>>

<<middleware>>
DataBlinder

Cloud provider

Figure 3. Middleware deployment view

In the trusted zone, different types of applications can benefit

from external cloud-based storage through a data protection gate-

way. The DataBlinder middleware along with its required assets

such as data protection policies and storage facilities are deployed

within the gateway. There are several interfaces exposed to the

applications, which are namely a Schema interface to enable clients
to define and annotate data schemas and data protection metadata,

an Entities interface to allow regular data-access operations, and

a Keys interface to allow the system to integrate with on-premise

key management systems (e.g., HSM). All data-access operations

are trusted, and the inter-application communications within the

datacenter follow regular security and access control mechanisms.

The untrusted zone consists of several cloud providers and the

communication channels between the application owner’s data-

center and these external resources. The middleware is distributed

since SE tactics are inherently distributed.

4.1 The middleware architecture
Fig. 4 illustrates four subsystems of DataBlinder. Depending on

the deployment location, either in the trusted or the untrusted

15/05/2019 draw.io

chrome-extension://pebppomjfocnoigkeepgbmcifnnlndla/index.html 1/1

 Middleware core

Data Prot.
 Metadata

 Resources

Interface
 Controllers

Request
 Processor

Tokenisation

Tactic
 Selector

 Tactics SPI

Schema
 Management

Annotations

Gateway
 Tactic

Cloud
 Tactic

Client
 Tactic

Client
 Tactic

Tactic
 impls

Client
 Tactic

Client
 Tactic

Tactic
 impls

(1)
(2)
(3)

Key
 Management

Data Protect.
 Policies

Resources
 Adapter(4)

Policies Storage resources

Metadata
Retrieval

Data protection
tactic at runtime

Cloud/on-premise
 persistence

Figure 4.Middleware component diagram.

zone, different interfaces and components are employed. (i) The
middleware-core subsystem is responsible for the abstract execution

of the persistence logic, e.g., Create Read Update Delete (CRUD)

operations, and adaptive and dynamic tactic selection at run-time.

(ii) The data protection metadata subsystem is responsible for the

persistence and retrieval of per-application database schemas and

data protection annotations. The schema management component

also validates whether the application documents correspond to

the configured schemas. (iii) The tactics SPI subsystem is responsible

for providing concrete tactic implementations, comprising a set of

gateway and cloud implementations. (iv) The resources subsystem
is responsible for enabling the access to external resources such

as cryptographic key management systems, and on-premise or

cloud-based resources such as storage systems.

4.2 Extensible and pluggable architecture
In this section, we present a more concrete description of the ex-

tensibility and pluggability of the DataBlinder architecture.

Tactic commonalities. Most tactics share common properties.

They are all distributed in the sense that two or more parties are

involved in performing a high-level operation such as boolean

search. The comprehensive surveys on SE [6, 24, 51] distill their life

cycle into three key operations: setup for key material generation

and initial index provisioning, update for dynamic constructions

with the operations like deletion, addition and modification, and

query for constructing tokens and performing the given function.

Each data protection tactic includes a subset of operations. Each

of these operations is a distributed protocol. As a result, tactics

share a common framework in the DataBlinder architecture sup-

porting: (1) gateway and cloud implementations per operation, (2)

cryptographic primitives as building blocks (e.g., PRF), (3) key man-

agement integration, (4) communication channels for transferring

protocol data, and lastly (5) data repository services available to

both the gateway and the cloud implementations to satisfy tactic-

specific requirements to construct distributed secure indexes.

DataBlinder Middleware Industry ’19, December 9–13, 2019, Davis, CA, USA

Gateway Interfaces Cloud Interfaces

Insert Insertion, DocIDGen, SecureEnc Insertion

Update Update, DocIDGen, Retrieval Update, Retrieval

SecureEnc

Delete Deletion Deletion

Read Retrieval, SecureEnc Retrieval

Equality Search EqQuery, EqResolution EqQuery

<Read>
Boolean Search BoolQuery, BoolResolution BoolQuery

<Read>
Aggregate <Query>, AggFunction

AggFunctionResolution

Table 1. Service Provider Interface (SPI). The implementations of these

interfaces get loaded dynamically at runtime. <Read> and <Query> denote a
set of interfaces required for a retrieval and a search operation.

Tactic SPI. The DataBlinder protection tactics can be extended

by leveraging a set of interfaces. Each of these interfaces exposes

a high-level operation defined in the data-access abstraction (see

Fig. 2), including a gateway and cloud versions as described earlier

in this section and Fig. 4. The first interface which is mandatory to

implement for all tactics is the setup interface. The other major but

optional operations include CRUD, various search and aggregate

queries. Each implementation receives all dependencies required

to perform its protocol as listed in the commonalities. Table 1 lists

the interfaces for a large subset of the high-level operations.

Tactic selection at runtime. The SPIs are implemented by

security experts. The middleware loads the right implementations

dynamically at runtime using the strategy design pattern [25].

4.3 Proof of concept development
DataBlinder supports two modes of execution: gateway and cloud,

implemented using Spring Boot, i.e., ~6,000 lines of Java 8. We em-

ployed libraries such as Bouncy Castle for basic cryptographic prim-

itives (e.g., AES/GCM, RSA/OAEP, HMAC-SHA256, etc.).We further

leveraged the Clusion [36] project to provide several data protection

tactics,and Javallier [55] for the Paillier [48] cryptosystem. The Dat-

aBlinder data protection tactics have been developed using these

building blocks. We employed document-oriented databases, e.g.,

MongoDB and Elasticsearch, to store documents and indexes. We

also employed a key-value datastore, e.g., Redis, in a semi-persistent

durability mode to take advantage of basic constructions such as

persistent sets, maps, and so on, to build custom indexes.

5 Use case validation and evaluation
We implemented and integrated several tactics using the proposed

achitecture based on the SPI pattern (see Table 2). The implemen-

tation covers a broad range of tactics, having various properties,

such as different protection levels, forward privacy (e.g. Mitra and

Sophos), deterministic and probabilistic encryption (e.g. DET and

RND), read and space efficiency (e.g. BIEX-2Lev and BIEX-ZMF),

data order (e.g. ORE and OPE), and HE (e.g. Paillier).

5.1 Healthcare use case
To validate the middleware, we present a real-world example of

the industry-standard FHIR-compliant [30] medical documents.

We annotate the schema based on some assumptions regarding

protection level and functionalities.

Example. Observations are measurements and assertions about

patients [30]. In the following document, the amount of Glucose

observed in a blood test is illustrated. Most of these fields are as-

sumed to be sensitive since they can be the indicators of diabetes.

{

i d : f001 ,

i d e n t i f i e r : 6323 ,

s t a t u s : f i n a l ,

code : Glucose ,

s u b j e c t : John Doe ,

e f f e c t i v e : 1359966610

i s s u e d : 1362407410 ,

pe r fo rmer : John Smith ,

v a l u e : 6 . 3 ,

i n t e r p r e t a t i o n : High

}

Sensitives Annotations

status C3, op [I, EQ, BL]
code C3, op [I, EQ, BL]
subject C2, op [I, EQ]
effective C5, op [I, EQ, BL, RG]
issued C5, op [I, EQ, BL, RG]
performer C1, op [I]

value C3, op [I, EQ, BL],
agg [avg]

Sensitives Tactic Selection Reasons

status BIEX-2Lev Boolean & cross-field

code BIEX-2Lev Boolean & cross-field

subject Mitra Identifier protection level

effective DET, OPE Range queries

issued DET, OPE Range queries

performer RND Structure protection level

value BIEX-2Lev, Paillier Cloud-side averages

C is a class; op is a list of operations; I,EQ, BL and RG are insertion,
equality, boolean and range queries; agg is the list of aggregate func-

tions; and avg is an average operation. DataBlinder enforces data

protection policies to perform tactic selection, and it abstracts away

the complexity of underpinning cryptographic protocols. Therefore,

software developers only require the necessary knowledge about

the data-access abstraction model. Moreover, the middleware de-

couples the applications built on top, in the sense that evolvability

of the tactics has limited impact on the applications with respect to

their functionality and data protection requirements.

5.2 Performance evaluation
We evaluate the overall performance overhead of DataBlinder in

comparison to the scenarios where: the application only does data

operations and does not use the middleware or any tactic (SA);
the data protection tactics are implemented hard-coded into the

application without using the middleware (SB); and the application

uses DataBlinder to enforce the required data protection tactics

(SC).
Set-up. To evaluate the performance overhead of DataBlinder,

we developed the middleware as presented in §4.3, and we deployed

an instance of it on the Openstack private cloud in gateway mode
and another instance on a public cloud provider in cloud mode. Our
underpinning Openstack compute node comes with 2.60 GHz Intel

Xeon E5-2660 processors and 128GB DDR3 memory. The gateway

VM instance has 8 vCPU cores and 16GB of RAM. The cloud VM

instance has 4 vCPU cores and 16GB RAM.We deployed an instance

of Redis in a semi-durability mode on both sides and an instance of

MongoDB on the cloud.We deployed an instance of Locust [31] load

generation and benchmarking framework in a third VM instance

on Openstack in the trusted zone of the experiment.

Results.We performed 3 experiments using the medical docu-

ment application introduced in §5.1. There were in total 8 tactics

involved in the benchmarks, namely Mitra, RND, Paillier, and five

times DET. Figure 5 illustrates insert and equality search operations,

as well as the overall throughput. There is 44% overall throughput

loss by employing data protection tactics. Adding our middleware

to this setting causes only 1.4% additional overall throughput loss

in comparison to the scenario where tactics are inflexibly inte-

grated into the application. The following table further shows the

overall average latency, and 50th, 75th and 99th percentile latency.

Middleware Industry ’19, December 9–13, 2019, Davis, CA, USA Heydari Beni, et al.

Protection level SPI*

Operation Scheme Class(#) Leakage Gateway Cloud Challenge Implementation

Equality Search DET 4 Equalities 9 6 - #
Mitra [15] 2 Identifiers 7 5 Local storage #
Sophos [7] 2 Identifiers 6 4 Key management #
RND 1 Structure 6 4 Inefficiency #

Boolean Search BIEX-2Lev [35] 3 Predicate 8 5 Storage impl. complexity [36] %
BIEX-ZMF [35] 3 Predicate 8 5 Storage impl. complexity [36] %

Range Query OPE [4] 5 Order 3 3 [40] %
ORE [5] 5 Order 3 3 [38] %

Sum Paillier [48] - - 3 3 Key management [55] %
Average Paillier [48] - - 3 3 Key management [55] %

Table 2. These cryptographic constructions have been implemented and integrated to DataBlinder using the tactic interfaces. ∗ denotes the number of service

interfaces required in the implementation (Table 1); # denotes that we implemented the construction; % denotes that the implementation is slightly modified.

Based on our observation, the execution of aggregate protocols,

namely the Paillier partially homomorphic encryption (PHE), had

a considerable impact on these numbers.

Scenario (latency) 50th 75th 99th Average

SA 62ms 81ms 140ms 85ms

SC 110ms 2500ms 13000ms 828ms

Aggregate 105ms 1700ms 5600ms 1114ms

46.6 50.9

98.3

20.4 16.1

55

18.3 15.7

54.2

0

20

40

60

80

100

120

Insert Equality Search Overall

T
hr

ou
gh

pu
t (

re
q.

/s
ec

on
d)

Without data protection Hard-coded data protection Data protection via DataBlinder

-44.8%-44%

-68,4%-69,2%-56,2%-60,7%

Figure 5. Per-operation and overall throughput comparison. Each

experiment included ~151k requests, ~50k documents, ~350k secure

index operations, and 1,000 benchmark users with a balance be-

tween read (equality search protocols), write (insertions and secure

indexing) and aggregate operations (search and homomorphic cal-

culation of averages). In addition to the computational and search

complexity of each tactic, the Paillier queries were executed ~50k

times per run, having a considerable impact on the throughput of

the experiments involving data protection tactics (blue and green).

6 Related work
Encrypted databases. Designing protected search systems has

been an active research area over the past years. CryptDB[52] is

one of the seminal works, using onion of encryption that encrypt

data in a layered approach for queries with different functionalities.

The main goal is to keep the underlying legacy database unchanged.

Pappas et al. [49] present Blindseer which is, unlike CryptDB, a

custom database based on an approach using encrypted bloom filter

trees as a storage mechanism. Fuhry et al. present the HardIDX [23]

secure index system which leveraged Intel SGX to perform rela-

tively efficient queries. Towards building secure NoSQL database

systems, ARX[50] aims at presenting a protected system on top

of MongoDB to provide the functionalities necessary to support

associative arrays. EncKV [56] proposed a secure key-value store

with a focus on secure and efficient partitioning of encrypted data

and distributing data evenly across a cluster.

Middleware solutions. Diallo et al. present CloudProtect [20],

a middleware to enable users transparently encrypt sensitive data

within various cloud applications. Their main goal is to support

application functionalities while protecting sensitive data. Cloud-

Protect uses deterministic encryption for search purposes, and on

top of that, it has a policy-based protocol to expose senesitive data

in plaintext for a limited duration on the server if some operation

or function execution requires access to the data in plaintext. Alves

et al. [39] present a framework for searching encrypted databases.

They use ORE and HE for the range and aggregate queries.

There are several commercial encryption products such as Sky-

high Networks[44] and CipherCloud[17]. Most of these solutions

employ legacy-friendly SE constructions to ensure that the existing

applications can operate as before. Recently, Ionic [33] presented

an encrypted search system with an advanced query construction

mechanism based on EC-OPRF [10].

Most of these systems either proposed new SE constructions

or employed fixed data protection tactics to provide their func-

tionalities. However, the key goals of DataBlinder are to present a

middleware solution allowing software developers to configure a

notion of security with respect to their required operations, and it

is not dependent on any particular database. Moreover, it facilitates

the future tactic extensions via its architecture.

7 Conclusion
Wepresented DataBlinder, a distributed data accessmiddleware that

supports fine-grained data protection configuration on application

data towards crypto agility. Our performance evaluations showed

that DataBlinder offers this flexibility at the cost of 1.4% overall

throughput loss in comparison to a scenario where the tactics are

inflexibly integrated into an application without the middleware.

Current architecture can be deployed as a cloud-native service,
where the gateway is a stateless data access middleware (e.g., ORM

[47]). However, there exist some secure SE tactics, e.g. Sophos [7],

requiring keeping the state at the gateway. A challenging research

direction towards secure cloud-native systems is to design efficient

stateless SE schemes. The current architecture does not take other

classes of constructions, e.g., MPC, Oblivious RAM, and TEE, into

consideration. It is interesting to explore and abstract their new

tradeoffs, different trust models and various execution frameworks.

DataBlinder Middleware Industry ’19, December 9–13, 2019, Davis, CA, USA

References
[1] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2004.

Order preserving encryption for numeric data. In Proceedings of the 2004 ACM
SIGMOD international conference on Management of data. ACM, 563–574.

[2] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. 2006. Deterministic and

Efficiently Searchable Encryption. Cryptology ePrint Archive, Report 2006/186.

https://eprint.iacr.org/2006/186.
[3] Alex Biryukov, Vesselin Velichkov, and Yann Le Corre. 2016. Automatic Search

for the Best Trails in ARX: Application to Block Cipher Speck. Cryptology ePrint

Archive, Report 2016/409. https://eprint.iacr.org/2016/409.
[4] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. 2012.

Order-Preserving Symmetric Encryption. Cryptology ePrint Archive, Report

2012/624. https://eprint.iacr.org/2012/624.
[5] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe

Zimmerman. 2015. Semantically secure order-revealing encryption: Multi-input

functional encryption without obfuscation. , 563–594 pages.

[6] Christoph Bösch, Pieter Hartel, Willem Jonker, and Andreas Peter. 2015. A survey

of provably secure searchable encryption. ACM Computing Surveys (CSUR) 47, 2
(2015), 18.

[7] Raphael Bost. 2016. âĹŚ oφoς : Forward Secure Searchable Encryption. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1143–1154.

[8] Raphael Bost, Brice Minaud, and Olga Ohrimenko. 2017. Forward and Back-

ward Private Searchable Encryption from Constrained Cryptographic Primitives.

Cryptology ePrint Archive, Report 2017/805. https://eprint.iacr.org/2017/805.
[9] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled)

fully homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT) 6, 3 (2014), 13.

[10] Jonathan Burns, Daniel Moore, Katrina Ray, Ryan Speers, and Brian Vohaska.

2017. EC-OPRF: Oblivious Pseudorandom Functions using Elliptic Curves. IACR
Cryptology ePrint Archive 2017 (2017), 111.

[11] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-

abuse attacks against searchable encryption. In Proceedings of the 22nd ACM
SIGSAC conference on computer and communications security. ACM, 668–679.

[12] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk,

Marcel-Catalin Rosu, and Michael Steiner. 2014. Dynamic Searchable Encryption

in Very-Large Databases: Data Structures and Implementation. Cryptology ePrint

Archive, Report 2014/853. https://eprint.iacr.org/2014/853.
[13] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel Rosu,

and Michael Steiner. 2013. Highly-Scalable Searchable Symmetric Encryption

with Support for Boolean Queries. Cryptology ePrint Archive, Report 2013/169.

https://eprint.iacr.org/2013/169.
[14] David Cash and Stefano Tessaro. 2014. The Locality of Searchable Symmetric

Encryption. Cryptology ePrint Archive, Report 2014/308. https://eprint.iacr.org/
2014/308.

[15] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou,

and Rasool Jalili. 2018. New constructions for forward and backward private sym-

metric searchable encryption. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. 1038–1055.

[16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2018.

Tfhe: Fast fully homomorphic encryption over the torus. Journal of Cryptology
(2018), 1–58.

[17] CipherCloud. 2014. CipherCloud. Online. https://www.ciphercloud.com/.
[18] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2011. Searchable

symmetric encryption: improved definitions and efficient constructions. Journal
of Computer Security 19, 5 (2011), 895–934.

[19] Ioannis Demertzis and Charalampos Papamanthou. 2017. Fast searchable encryp-

tion with tunable locality. In Proceedings of the 2017 ACM International Conference
on Management of Data. ACM, 1053–1067.

[20] Mamadou H Diallo, Bijit Hore, Ee-Chien Chang, Sharad Mehrotra, and Nalini

Venkatasubramanian. 2012. Cloudprotect: managing data privacy in cloud appli-

cations. In 2012 IEEE Fifth International Conference on Cloud Computing. IEEE,
303–310.

[21] Taher ElGamal. 1985. A public key cryptosystem and a signature scheme based

on discrete logarithms. IEEE transactions on information theory 31, 4 (1985),

469–472.

[22] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel Rosu, and

Michael Steiner. 2015. Rich Queries on Encrypted Data: Beyond Exact Matches.

Cryptology ePrint Archive, Report 2015/927. https://eprint.iacr.org/2015/927.
[23] Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian Ker-

schbaum, and Ahmad-Reza Sadeghi. 2017. HardIDX: Practical and secure index

with SGX. In IFIP Annual Conference on Data and Applications Security and Privacy.
Springer, 386–408.

[24] Benjamin Fuller, Mayank Varia, Arkady Yerukhimovich, Emily Shen, Ariel Ham-

lin, Vijay Gadepally, Richard Shay, John Darby Mitchell, and Robert K Cun-

ningham. 2017. Sok: Cryptographically protected database search. In 2017 IEEE
Symposium on Security and Privacy (SP). IEEE, 172–191.

[25] Erich Gamma. 1995. Design patterns: elements of reusable object-oriented software.
Pearson Education India.

[26] Eu-Jin Goh et al. 2003. Secure indexes. IACR Cryptology ePrint Archive 2003
(2003), 216.

[27] Michael T Goodrich, Roberto Tamassia, and Michael H Goldwasser. 2014. Data
structures and algorithms in Java. John Wiley & Sons.

[28] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. 2019.

Learning to Reconstruct: Statistical Learning Theory and Encrypted Database

Attacks. In IEEE Symposium on Security and Privacy (S&P) 2019.
[29] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed, and

Thomas Ristenpart. 2017. Leakage-abuse attacks against order-revealing encryp-

tion. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 655–672.
[30] Health Level Seven International (HL7) health-care standards organization. 2011.

Fast Healthcare Interoperability Resources. http://hl7.org/fhir/ (Last visit: 2019-
05-16).

[31] Jonatan Heyman et al. 2016. Locust Load Testing Framework. https://github.
com/locustio/locust (Last visit: 2019-05-16).

[32] imec.icon. 2016-2018. SeClosed: Secure, Cloud-based Storage and Process-

ing of Sensitive Documents. https://www.imec-int.com/en/what-we-offer/
research-portfolio/seclosed (Last visit: 2019-11-16).

[33] Ionic. 2014. Introducing Ionic Encrypted Search. Online. https://www.ionic.com/
blog/introducing-ionic-encrypted-search/.

[34] Yuval Ishai, Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. 2016. Private Large-

Scale Databases with Distributed Searchable Symmetric Encryption. In Topics in
Cryptology - CT-RSA 2016, Kazue Sako (Ed.). Springer International Publishing,

Cham, 90–107.

[35] Seny Kamara and Tarik Moataz. 2017. Boolean searchable symmetric encryption

with worst-case sub-linear complexity. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 94–124.

[36] Encrypted Systems Lab. 2016. Clusion. https://github.com/encryptedsystems/
Clusion (Last visit: 2019-04-30).

[37] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. 2018. Improved

reconstruction attacks on encrypted data using range query leakage. In 2018 IEEE
Symposium on Security and Privacy (SP). IEEE, 297–314.

[38] Lewi et al. 2016. An Implementation of Order-Revealing Encryption. https:
//github.com/kevinlewi/fastore (Last visit: 2019-05-16).

[39] Pedro G. M. R. Alves and Diego F. Aranha. 2018. A framework for searching

encrypted databases. Journal of Internet Services and Applications 9, 1 (03 Jan
2018), 1. https://doi.org/10.1186/s13174-017-0073-0

[40] Ayman Madkour. 2018. Order-Preserving Encryption. https://github.com/
aymanmadkour/ope (Last visit: 2019-05-16).

[41] James Martin. 1981. Managing the data base environment. (1981).

[42] Kurt Mehlhorn and Peter Sanders. 2008. Algorithms and data structures: The basic
toolbox. Springer Science & Business Media.

[43] Muhammad Naveed, Seny Kamara, and Charles VWright. 2015. Inference attacks

on property-preserving encrypted databases. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM, 644–655.

[44] SkyHigh Networks. 2014. SkyHigh Networks. Online. https://www.
skyhighnetworks.com/cloud-encryption/.

[45] U.S. Department of Health and Human Services. [n. d.]. Breach Portal: Notice

to the Secretary of HHS Breach of Unsecured Protected Health Information.

https://ocrportal.hhs.gov/ocr/breach/breach_report.jsf. Accessed: 2019-04-13.

[46] US Department of Health, Human Services, et al. 2009. HITECH Act enforcement

interim final rule. US Department of (2009).

[47] Elizabeth J O’Neil. 2008. Object/relational mapping 2008: hibernate and the

entity data model (edm). In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data. ACM, 1351–1356.

[48] Pascal Paillier. 1999. Public-key cryptosystems based on composite degree resid-

uosity classes. In International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 223–238.

[49] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Se-

ung Geol Choi, Wesley George, Angelos Keromytis, and Steve Bellovin. 2014.

Blind seer: A scalable private dbms. In 2014 IEEE Symposium on Security and
Privacy. IEEE, 359–374.

[50] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. 2016. Arx: A strongly

encrypted database system. IACR Cryptology ePrint Archive 2016 (2016), 591.
[51] Geong Sen Poh, Ji-Jian Chin, Wei-Chuen Yau, Kim-Kwang Raymond Choo, and

Moesfa Soeheila Mohamad. 2017. Searchable symmetric encryption: designs and

challenges. ACM Computing Surveys (CSUR) 50, 3 (2017), 40.
[52] Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Balakrishnan.

2011. CryptDB: protecting confidentiality with encrypted query processing. In

Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles.
ACM, 85–100.

[53] General Data Protection Regulation. 2016. Regulation (EU) 2016/679 of the

European Parliament and of the Council of 27 April 2016 on the protection of

natural persons with regard to the processing of personal data and on the free

movement of such data, and repealing Directive 95/46. Official Journal of the
European Union (OJ) 59, 1-88 (2016), 294.

[54] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. 2000. Practical tech-

niques for searches on encrypted data. In Security and Privacy, 2000. S&P 2000.
Proceedings. 2000 IEEE Symposium on. IEEE, 44–55.

https://eprint.iacr.org/2006/186
https://eprint.iacr.org/2016/409
https://eprint.iacr.org/2012/624
https://eprint.iacr.org/2017/805
https://eprint.iacr.org/2014/853
https://eprint.iacr.org/2013/169
https://eprint.iacr.org/2014/308
https://eprint.iacr.org/2014/308
https://www.ciphercloud.com/
https://eprint.iacr.org/2015/927
http://hl7.org/fhir/
https://github.com/locustio/locust
https://github.com/locustio/locust
https://www.imec-int.com/en/what-we-offer/research-portfolio/seclosed
https://www.imec-int.com/en/what-we-offer/research-portfolio/seclosed
https://www.ionic.com/blog/introducing-ionic-encrypted-search/
https://www.ionic.com/blog/introducing-ionic-encrypted-search/
https://github.com/encryptedsystems/Clusion
https://github.com/encryptedsystems/Clusion
https://github.com/kevinlewi/fastore
https://github.com/kevinlewi/fastore
https://doi.org/10.1186/s13174-017-0073-0
https://github.com/aymanmadkour/ope
https://github.com/aymanmadkour/ope
https://www.skyhighnetworks.com/cloud-encryption/
https://www.skyhighnetworks.com/cloud-encryption/

Middleware Industry ’19, December 9–13, 2019, Davis, CA, USA Heydari Beni, et al.

[55] Brian Thorne et al. 2017. Javallier. https://github.com/n1analytics/javallier (Last
visit: 2019-05-15).

[56] Xingliang Yuan, Yu Guo, Xinyu Wang, Cong Wang, Baochun Li, and Xiaohua

Jia. 2017. Enckv: An encrypted key-value store with rich queries. In Proceedings

of the 2017 ACM on Asia Conference on Computer and Communications Security.
ACM, 423–435.

https://github.com/n1analytics/javallier

	Abstract
	1 Introduction
	2 Background
	3 Conceptual abstraction models
	3.1 An abstraction model for data protection tactics
	3.2 An abstraction model for protected data access

	4 Architecture and implementation
	4.1 The middleware architecture
	4.2 Extensible and pluggable architecture
	4.3 Proof of concept development

	5 Use case validation and evaluation
	5.1 Healthcare use case
	5.2 Performance evaluation

	6 Related work
	7 Conclusion
	References

