
Journal of Systems Architecture 95 (2019) 36–46

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Infracomposer: Policy-driven adaptive and reflective middleware for the

cloudification of simulation & optimization workflows

Emad Heydari Beni a , ∗ , Bert Lagaisse

a , Wouter Joosen

a

imec-DistriNet, KU Leuven, Leuven, 3001 Belgium

a r t i c l e i n f o

Keywords:

Workflow

Cloud computing

Middleware

Adaptability

Reflection

Parallel and distributed architectures

a b s t r a c t

The simulation and optimization of complex engineering designs in automotive or aerospace involves multiple

mathematical tools, long-running workflows and resource-intensive computations on distributed infrastructures.

Finding the optimal deployment in terms of task distribution, parallelization, collocation and resource as-

signment for each execution is a step-wise process involving both human input with domain-specific knowledge

about the tools as well as the acquisition of new knowledge based on the actual execution history.

In this paper, we present a policy-driven adaptive and reflective middleware that supports smart cloud-based

deployment and execution of engineering workflows. This middleware supports deep inspection of the workflow

task structure and execution, as well as of the very specific mathematical tools, their executions and used param-

eters. The reflective capabilities are based on multiple meta-models to reflect workflow structure, deployment,

execution and resources. Adaptive deployment is driven by both human input as meta-data annotations as well

as adaptation policies that reason over the actual execution history of the workflows. We validate and evaluate

this middleware in real-life application cases and scenarios in the domain of aeronautics.

1

u

t

p

s

v

u

c

o

o

c

t

p

c

o

c

w

i

o

a

m

t

a

p

i

a

t

d

t

a

B

e

t

t

m

b

t

t

i

k

s

p

h

R

A

1

. Introduction

Engineers in major industries, such as aerospace and automotive,

se simulation and optimization workflows to create, simulate and op-

imize complex designs. Such workflows are complex and long running

rocesses, which are typically composed of various software tools and

ervices, to simulate and optimize physical properties such as strength,

ibrations, geometrical decomposition or material selection. Engineers

se different hardware to execute these workflows, e.g., their desktop

omputers or High Performance Computing (HPC) clusters.

Current situation. Desktop computers have limited capacity in terms

f processors, memory and storage. In addition, the parallel execution

f the experiments is tied to the number of available computers. HPC

lusters, unlike desktop computers, are very efficient and powerful, but

hey are constructed with dedicated expensive hardware and their ca-

acity is not always directly available. Besides, time slot reservation and

omplex queuing API are yet another hassle for those with long-running

r recurring experiments.

The promise of the cloud. Engineers can nowadays benefit from cloud

omputing to gain on-demand access to the required resources for their

orkflows, often based on cheap commodity hardware. Cloud comput-

ng is a model for enabling on-demand network access to a shared pool

f configurable computing resources (e.g., networks, servers, storage,

pplications, and services) [1] . Cloud orchestration tools enable auto-
∗ Corresponding author.

E-mail addresses: Emad.HeydariBeni@cs.kuleuven.be (E. Heydari Beni), Bert.Lagai

ttps://doi.org/10.1016/j.sysarc.2019.03.001

eceived 7 March 2018; Received in revised form 3 January 2019; Accepted 6 March

vailable online 9 March 2019

383-7621/© 2019 Elsevier B.V. All rights reserved.
ated provisioning of the required cloud-related resources such as vir-

ual machines, virtual networks, and required infrastructure software

nd middleware platforms. As such, the infrastructure and deployment

rocess become completely composable and programmable .

Challenges. There are still key problems and challenges when deploy-

ng and executing engineering workflows in the cloud. One needs to

utomate the deployment, as well as support smart scaling and execu-

ion of simulation and optimization workflows in the cloud. For each

eployment and execution of the workflow, this process includes adap-

ive deployment to collocate, separate and parallelize the different tasks

nd their specific tools on the right amount and the right type of nodes.

oth can also vary depending on the specific parameters for a certain

xecution. Automating this process includes automatic determination of

he required resource types (virtual machines, storage volumes, etc), au-

omatic estimation of the amount of cloud resources (number of virtual

achines, amount of memory and cores, etc), as well as the automatic

ootstrapping and destruction of the required infrastructure.

InfraComposer: towards smart deployment in the cloud. To address

hese challenges, we present a reflective and adaptive middleware

hat enables and manages smart, adaptive workflow deployment, scal-

ng and execution in the cloud. We leverage both the domain-specific

nowledge about the concrete tools that are used, and deep in-

pection of these tools when deployed and executing on the cloud

latform.
sse@cs.kuleuven.be (B. Lagaisse), Wouter.Joosen@cs.kuleuven.be (W. Joosen).

 2019

https://doi.org/10.1016/j.sysarc.2019.03.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2019.03.001&domain=pdf
mailto:Emad.HeydariBeni@cs.kuleuven.be
mailto:Bert.Lagaisse@cs.kuleuven.be
mailto:Wouter.Joosen@cs.kuleuven.be
https://doi.org/10.1016/j.sysarc.2019.03.001

E. Heydari Beni, B. Lagaisse and W. Joosen Journal of Systems Architecture 95 (2019) 36–46

Fig. 1. Middleware for cloudifying simulation workflows.

n

h

n

s

n

t

a

o

e

d

S

i

t

i

g

4

b

t

s

a

t

p

m

n

fl

l

w

t

2

f

d

2

t

d

fi

i

i

a

t

2

b

d

i

g

o

f

w

t

e

n

e

l

w

w

t

b

s

t

t

a

The adaptive middleware is driven by both input from the engi-

eers about the properties of the tools they use, as well as execution

istory of these tools. The input from the engineers is specified as an-

otations on the workflows, and is based on human knowledge and as-

umption about the tools with regards to CPU usage, memory usage and

etwork usage. The execution history over time will be used to optimize

he original deployment and scaling plan, and thus to further adapt to

ctual real execution knowledge (see Fig. 1).

As such, our middleware defines two key contributions to existing

rchestration and deployment middleware:

1. Annotation-driven resource reservation and deployment planning.

Based on the annotations in the workflow, an initial deployment

plan will be generated. A deployment plan is a topology and or-

chestration specification for a cloud application which can be ex-

ecuted by a cloud orchestrator (see Section 3.2, 3.2).

2. History-driven adaptive scaling and reconfiguration. In addition, the

middleware adapts the configurations of the deployment plans

based on the execution history of the workflows using previ-

ous results. This is driven by policies that can reason about,

and perform statistical analysis on the execution history (see

Section 3.3).

To achieve this, the reflective meta-models in the middleware

nable reification of

1. key architectural concepts such as workflows, tasks, specific tools

and their deployment,

2. key execution concepts such as specific tool executions with spe-

cific parameters, and

3. key resource utilization concepts such as nodes, cores, cpu time,

memory, storage and network metrics.

Moreover, we validate and evaluate the concepts with real world, in-

ustrial use cases and scenarios reflecting actual production settings (see

ection 2). The main focus of this paper is to present a holistic cloud-

fication system for engineering workflows with a special attention to

he reification of various concepts. We validate the system’s applicabil-

ty and relevance by trying and analysing these engineering use cases in

eneral, and in particular aeronautics.

Compared to our ARM 2017 paper [2] , this paper includes about

5% new material. First we extend the middleware concepts with policy-

ased adaptation. Second, we describe the fine-grained architecture of

he adaptive and reflective middleware. Third, we provide an exten-

ive validation and evaluation in multiple real life application cases and

daptive scenarios.

The rest of this paper is structured as follows. Section 2 presents

wo motivating scenarios of engineering workflows and their common

atterns. Section 3 describes the architecture and the concepts of the

iddleware. Section 4 validates multiple adaptive (re)deployment sce-

arios. Section 5 presents the state-of-the-art in cloudification of work-

ows, adaptive middleware, and auto-scaling techniques. Section 6 out-

ines the limitations and the possible opportunities to extend the current

ork to become smarter and more comprehensive. Section 7 concludes

his paper and outlines our research outcomes.
37
. Motivation and use cases

In this section, we describe two examples of industrial workflows

rom the aeronautics domain as motivation and validation in order to

iscuss adaptive scenarios.

.1. Electrical Wiring Interconnection System (EWIS)

EWIS is one of the important steps of the multidisciplinary design op-

imization (MDO) in the design process of aircrafts. Aerospace engineers

esign and execute complex simulation and optimization experiments to

nd optimal solutions for a cockpit’s wire harness routing.

Motivating Scenario . When considering the tasks in the workflow, it

s unclear whether the main optimization tool used by one of the tasks

s memory intensive or not. The most optimal deployment is achieved in

 step-wise adaptive process, first driven by the engineer’s annotations,

hen by the execution history of the tool.

(i) First, the engineer of the workflow specifies that the tool (the

wire harness tool) is not CPU intensive but memory intensive be-

cause it loads a very large amount of data (i.e., physical features

of an aircraft) to the memory. At least, this is the engineer’s as-

sumption. He defines this assumed knowledge as annotations.

(ii) The middleware will allocate a large amount of memory with few

number of cores for each virtual node in the cloud and enables the

engineer to execute the experiment as specified in the workflow.

(iii) However, execution history shows that the tool is mostly CPU

intensive because the executing nodes reached the system load

saturation limits, and the memory was overallocated.

(iv) The deployment plan should be updated to employ a higher num-

ber cores and less amount of memory for the virtual nodes.

.2. Design of the hinge system of an aircraft rudder

Another multidisciplinary design optimization (MDO) example can

e found in the design process of aircrafts. Optimization of a hinge

esign is a crucial part of an aircraft rudder design as a whole, and

t is automated as a workflow. The workflow consists of a set of en-

ineering tools, which are responsible for meshing and stress analysis

f hinge components, as well as performing a quasi-exhaustive search

or all different possibilities in order to minimise objectives (e.g., total

eight) [3,4] .

Motivating scenario. These engineering tools are interdependent, and

heir execution flow within the workflow is a complex design by an MDO

xpert. Therefore, the supported level of parallellization, as well as the

umber of nodes and tool instances needed are unclear to an airplane

ngineer.

(i) First, the engineer of the workflow specifies to use only one very

arge node, as well as an expected execution time. (ii) The middleware

ill instantiate the node and execute the experiment as specified in the

orkflow. (iii) However, the execution history shows that the execution

ook much longer than the initial anticipation because of the large num-

er of requested experiments. This resulted in many parallel runs and

cheduled jobs. (iv) The deployment plan should be updated to adjust

he number of nodes (rescaling) with regards to the expected execution

ime.

Section 4 presents more scenarios. Based on each of these workflows,

 similar pattern emerges:

• The deployment middleware needs initial domain knowledge

about the tools to achieve a first deployment plan.

• Actual executions of the tool with specific parameters might re-

quire optimization of the deployment plan.

• These workflows need different discipline analysis tools for ex-

ecution, and each tool could be installed on a specific operat-

ing system and specific host type (memory-focused host, CPU-

focused host or high-performing storage hosts with SSDs).

E. Heydari Beni, B. Lagaisse and W. Joosen Journal of Systems Architecture 95 (2019) 36–46

l

c

3

t

a

p

i

t

a

a

fi

e

c

a

t

t

(

b

t

m

F

a

t

c

a

3

c

t

e

m

f

n

c

a

m

fl

e

s

n

b

b

t

e

f

i

e

m

o

v

i

fi

g
• These workflows are often computationally intensive, and their

execution sometimes takes hours, days or weeks to be completed.

Engineers use parallel runs to speed up the execution. That may

have impact on network topology.

• These workflows are used in a continuous improvement process

by reconfiguration of the design parameters, and recurring re-

executions to achieve the optimized objectives. As such, the ac-

tual parameters of the executions might require adaptation of the

deployment as tools might become more dependent on CPU than

disk for different parameters.

These common patterns introduce several key problems and chal-

enges (refer to Section 1) leading to manual, duplicate, complex, time-

onsuming work for engineers.

. The infracomposer middleware

This section presents the architecture of InfraComposer, focussing on

he different features and subsystems of the policy-driven reflective and

daptive middleware for the cloudification of engineering workflows.

First, the middleware supports annotation-driven, cloud-based de-

loyment of engineering workflows and their different subtasks. Dur-

ng execution, it collects runtime information about task executions and

he underpinning infrastructure by reflective monitoring of resources,

s well as deep inspection of software tools. Adaptation policies, which

re based on the execution history, enable the middleware to recon-

gure the deployment plans predictively to be adaptive for recurrent

xecution of the workflows.

The InfraComposer middleware architecture consists of four main

omponents (see Fig. 2): (i) a workflow manager component to expose

 workflow deployment API and to identify the annotated tasks and

heir annotations, (ii) a configurator component to generate configura-

ions based on given annotations with respect to execution history data,

iii) a deployment plan composer component to produce deployment plans

ased on elementary deployment modules for the cloud orchestrator and

o initiate the deployment, and (iv) a monitoring component to store live

onitoring data of workflow execution.
ig. 2. Overview of the proposed middleware with the annotation processing

nd configuration components.

q

w

a

w

o

e

t

t

r

t

t

s

38
The rest of this section is structured as follows. First, we describe

he annotation-based deployment. We then elaborate on the reflective

apabilities and the meta-models. Third, we describe the policy-driven

daptation architecture.

.1. Annotation-based deployment

A simulation and optimization workflow is a group of tasks that, once

ompleted, will accomplish some objectives. As explained in Section 1 ,

hese tasks employ different analysis tools, which are responsible for the

xecution. Workflows and tasks can be annotated to provide more infor-

ation about the required resources. InfraComposer is capable of identi-

ying these annotations in the workflow manager component to provide

ecessary information for the configurator component. There are two

ategories of annotations: direct-deployment and resource-consumption

nnotations.

Direct-deployment annotations. These annotations provide the

iddleware with direct information concerning deployment of work-

ows on the cloud. The crucial aspects described by annotations are the

mployed analysis tools, their deployment locations and number of in-

tances. Tools can either be collocated or separately deployed on the

odes. For example, annotations could describe that some tools should

e deployed on one node, others on individual nodes, and there should

e five instances of each node. Furthermore, network-related annota-

ions can propose a networking scheme for tools and nodes where nec-

ssary. For example, network-level segregation of nodes can be achieved

or a network intensive workflow.

Another direct-deployment annotation is the identifier of the exist-

ng resources (e.g., instance images, volumes, networking components,

tc.). For instance, some of the engineering tools need human involve-

ent during the installation process, or install slowly due to the size

f the packages. Therefore, these tools can be installed and prepared as

irtual machine images to speed up the deployment process. The unique

dentifiers of the images help the configurator component provide con-

gurations to the deployment plan composer component.

Resource-consumption annotations. These annotations provide

eneral, approximate information about the infrastructural resource re-

uirements of the tools with regard to disk, memory, processor and net-

ork. The four main categories of resource-consumption annotations

re presented in Table 1 .

Workflows can specify whether the experiment is disk intensive, as

ell as the required space. Cloud providers, either private or public,

ffer various types of storage systems with varying capabilities, speed,

tc. In addition, some clients are concerned about data locality due to

he enterprise policies or governmental law (e.g., GDPR [5]). Such anno-

ations guide InfraComposer to select appropriate storage options with

espect to the given constraints.

The computationally intensive workflows should employ proper vir-

ual machines in order to execute efficiently and to minimise the in-

erference with other co-existing cloud users. Some virtual machines

hare the physical processors with other tenants, and some have
Table 1

Four main categories of resource-consumption anno-

tations.

Category Annotation

Disk Disk intensive percentage

Required disk space GB

Data locality location

Memory Memory intensive percentage

Required RAM GiB

Processor CPU intensive percentage

GPU intensive percentage

Required cores number of cores

Network Network intensive percentage

Required bandwidth Mbps

E. Heydari Beni, B. Lagaisse and W. Joosen Journal of Systems Architecture 95 (2019) 36–46

Fig. 3. The structural meta-model.

C

i

p

c

n

T

i

m

a

3

d

C

m

m

e

t

m

t

m

F

fl

s

o

m

t

p

t

(

c

a

Fig. 4. The deployment meta-model.

Fig. 5. The execution meta-model.

a

g

r

3

a

t

i

q

f

w

i

a

d

PU-pinning, meaning that the virtual cores are mapped to the phys-

cal cores in a shared-nothing approach. Besides, some public cloud

roviders offer domain-specific types of virtual machines such as ac-

elerated instances with GPU.

Furthermore, parallel execution of workflows may have considerable

etwork overhead due to the continuous transfer of large chunks of data.

hat can easily saturate the bandwidth, slow down the execution, and

nterfere with other co-existing users. Network annotations enable the

iddleware to compose appropriate network architectures based on the

vailable networking infrastructure.

.2. Reflective capabilities and meta-models

The middleware follows the temporal correspondence approach into

ifferent meta-models [6] . There are four styles of reflection in Infra-

omposer represented by four meta-models, namely structural, deploy-

ent, execution and resource reflection.

Structural reflection. Structural reflection [7] results in a meta-

odel of the different static concepts in the workflows defined by the

ngineers, which represents the structure of workflows and tools within

he middleware and the execution history. Fig. 3 illustrates the meta-

odel. This meta-model describes engineering workflows and composi-

ion of activities and tools, as well as annotations.

Deployment reflection. Deployment reflection results in a meta-

odel representing and reifying the concepts in the deployment model.

ig. 4 illustrates the deployment plan and the mappings between work-

ows, activities, tools (not illustrated), and cloud-based components

uch as compute nodes, storage and networking elements.

Execution reflection. Execution reflection results in a meta-model

f the execution of activities and specific tools on specific nodes. This

odel reifies concepts such as execution per workflow, execution per ac-

ivity, and execution per tool with respect to the engineer’s given design

arameters (see Fig. 5).

Resource reflection. Resource reflection results in a meta-model of

he underpinning cloud infrastructure resources and domain resources

see Fig. 6). Cloud infrastructure resources include concepts such as pro-

essing (cores), compute nodes, memory, network and storage, which

re reified for each execution by consumption pattern. Such reflection
39
llows the monitoring and adaptation phase to benefit from coarse-

rained or deep introspection of resources, leading to more efficient

esource allocation in the future execution of the workflows.

.3. Policy-driven adaptive architecture

InfraComposer monitors the execution of the workflows and builds

n execution history, with which it fine-tunes the deployment plan and

he configurations to make the future executions more efficient. Adding

ntelligence to the smart adaptation capabilities of the middleware re-

uires the acquisition of new knowledge about the execution of the dif-

erent tasks and tools. For example, an annotation suggested that a tool

as disk intensive, but the execution history teaches us that it is CPU

ntensive and only uses two cores for input files smaller than 100 MB.

A recent survey [8] classifies the architectural patterns of self-

daptive autoscaling systems into three groups: feedback loop, observe-

ecide-act and MAPE(-K).
Fig. 6. The resource meta-model.

E. Heydari Beni, B. Lagaisse and W. Joosen Journal of Systems Architecture 95 (2019) 36–46

Fig. 7. Adaptive middleware using MAPE-K control loop.

i

F

p

c

n

t

n

i

p

c

c

i

u

p

w

a

t

s

p

a

o

m

t

c

u

m

o

s

e

w

i

t

t

v

a

N

i

w

F

o

n

3

n

p

3

s

a

i

f

t

i

e

t

f

i

e

e

3

b

e

3

o

s

P

s

e

c

s

a

p

l

i

e

I

c

i

i

e

w

f

c

i

e

i

a

4

m

u

o

r

d

o

p

(

a

a

c

t

e

v

m

T

s
InfraComposer is a policy-driven (self-)adaptive middleware follow-

ng the MAPE-K [9] architecture of self-adaptive systems [10] (see

ig. 7).

Among different architectural patterns and decision making ap-

roaches, we employed MAPE-K on account of better separation of con-

erns. Furthermore, we opted for a rule-based control loop because of

egligible overhead and manageable policy reconfigurations at runtime.

As illustrated in Fig. 2 , the monitoring phase collects information from

he cloud and workflow-specific resources. The data processor compo-

ent parses, filters, and transforms the monitoring data and persists it

n a TSDB. The analysis phase uses the persisted monitoring data by

erforming statistical aggregate queries (e.g., max, min, average, per-

entile, etc.), and it employs a policy engine to enforce adaptation poli-

ies to assess the previous executions and to determine potential future

mprovements. The planning phase reconfigures the deployment plans,

sing the history-driven scaling propositions produced in the previous

hase. The execution phase redeploys the cloud resources and the soft-

are tools for another execution. The knowledge about the workflows,

nd the cloud infrastructure (i.e., public/private providers, available

ypes of resources, the existing resources, etc.) is a cross-cutting aspect

erving information to each phase.

In the InfraComposer adaptive architecture, the analysis and the

lanning phase are crucial. We employed a reactive [11] policy-based

pproach to adjust the deployment plans and resource allocation based

n certain thresholds provided in policies. For example, a processing

etric driven by statistics based on the execution history exceeds a par-

icular threshold defined in the rules. This shows that the activity is a

omputationally intensive task. Then the configurator could reconfig-

re the deployment plan for that node to employ CPU-focused virtual

achines.

Adaptation policies consist of rescaling rules. Each rule is composed

f zero or more conditions, as well as a number of actions as a con-

equence. As depicted in Fig. 2 , the metrics aggregator component ex-

cutes complex statistical queries on time series data gathered during

orkflow executions, and it provides the aggregate data to the pol-

cy engine component through its interface. The scope of these reflec-

ive data includes cluster-wide metrics regarding the nodes (Cluster),
he network (Net) and the storage systems (Storage), together with

irtual-node related metrics concerning an average executing node (VM)
nd the coordinator node (Master). For instance, a condition can be

et.bandwidth_utilization < 1Gbps . When a condition is sat-

sfied, the policy engine performs rescaling actions (e.g. resize , add),
hich provides re-configuration hints to the configurator component.

or instance, the resize action can be about nodes (e.g. number of cores,

r the amount of memory), or it can be cluster-wide (e.g. number of

odes).

.4. Monitoring data management

We first present more details about the data management compo-

ents, and then we describe the scalability concerns and the existing

ossible solutions.

.4.1. Monitoring data management components

The monitoring data management of InfraComposer consists of (i) a

et of telemetry data collectors (probes or agents) to inspect processes
40
nd system-wide metrics, (ii) data processing pipelines to parse incom-

ng data streams, filter out irrelevant (or erroneous) entries, and trans-

orm them to the required format, (iii) a time-series database (TSDB)

o store the execution history and (iv) a metric aggregator component

ncluding a data visualization layer to obtain aggregate inquiries, and

ventually make them available for the policy engine.

For example, when a workflow engine dispatches jobs across a clus-

er of nodes, log entries regarding job events (e.g., started, completed,

ailed, etc.) are streamed through the monitoring components and stored

n the TSDB. The middleware is now capable of observing job count, job

xecutions, throughput, and so forth. An example query can be the av-

rage percentage of maximum IO-wait during periodic time windows of

0 seconds for a specific python process, running on all worker nodes,

etween the start and the end of the previous round of the workflow

xecution.

.4.2. Scalability of the stack

The data processor component is perceived to be scalable depending

n the monitoring stack. Telemetry data collectors (monitoring probes)

hould perform their tasks independently on worker nodes. The Data

rocessing pipeline can scale out horizontally since its functionalities are

tateless and limited to parsing, filtering and transforming the input and

ventually forwarding the stream to the time series database. Lastly, the

hosen TSDB (e.g., InfluxDB, Elasticsearch, etc.) should be horizontally

calable. Recently, Jensen et al. [12] carried out a comprehensive survey

bout different angles of such databases including their architectural

atterns.

Typically the data processing pipeline (e.g., Logstash) is the weakest

ink and it is likely to be CPU and network intensive [13] . More specif-

cally, the processing functionalities include numerous CPU intensive

xecutions of regular expressions through filtering plugins (e.g., Grok).

n addition, it is network intensive, in the sense that if the input rate ex-

eeds the maximum limit of the processing pipeline instance capacity,

t will then throttle itself.

The first remedy to alleviate the workload is to perform preprocess-

ng at the data collectors side. For example, data collectors should ex-

cute regular expressions, detect and filter unnecessary logs; in other

ords, they should lift the workload of the data processing pipeline be-

ore shipping the logs. Depending on the volume of workload, prepro-

essing is not always sufficient; in fact, the pipeline may again throttle

tself against large-scale settings. The second additional solution is to

mploy messaging queues [13] . In this scenario, the processing pipeline

nstances need to get scaled out horizontally and follow a pull model

gainst the queue (e.g., a Kafka topic).

. Prototype implementation and use case validation

In this section we assess and validate our adaptive and reflective

iddleware for the cloudification of simulation workflows based on the

se cases defined in Section 2 . More specifically, we demonstrate a set

f particular adaptive deployment scenarios and validate how both the

eflective capabilities as well as the adaptation capabilities of the mid-

leware can cope with each adaptive deployment scenario. As a proof

f concept, we implemented the concepts and architecture of InfraCom-

oser in our prototype middleware and developed our two use cases

i.e., (i) the EWIS design and (ii) the design of the hinge system of an

ircraft rudder (see Section 2)) as two simulation workflows that lever-

ge the production workflow engine and actual simulation tools of the

ompanies.

Simulation and optimization workflows, to achieve optimal objec-

ives, go through an iterative execution of experiments. Each run of the

xperiments comes with different input design variables which are pro-

ided by the workflow engine at runtime. Input design variables are

ost of the time slightly different compared to the previous rounds.

he behavior of a run is most likely predictable and more and less the

ame as the previous round. We can not be certain that these workflows

E. Heydari Beni, B. Lagaisse and W. Joosen Journal of Systems Architecture 95 (2019) 36–46

Fig. 8. Overview of the workflow of wire harness

routing simulation and optimization in the cloud. The

workflow engine (master node) and the worker nodes

are deployed in virtual machines.

a

t

a

b

A

w

n

m

d

(

t

(

n

t

a

b

t

a

r

4

f

W

t

s

4

b

l

c

t

a

t

o

t

fl

A

g

G

T

re insensitive to the input data, however based on our observations,

he behavior change is not very extreme. Therefore, in this paper we

ssumed that every iteration of a workflow exhibits roughly the same

ehavior.

Moreover, we used OpenStack as a state-of-the-art cloud platform.

part from the industrial domain tools in the use cases, the middle-

are is written in Java using the Spring framework, and the other tech-

ologies involved in each MAPE-K phase were: (1) Elastic Stack [13] as

onitoring stack in the monitoring phase , including a set of telemetry

ata collectors (Filebeat and Metricbeat), a data processing pipeline

Logstash), a time series database (Elasticsearch) and a data visualisa-

ion layer (Kibana), (2) Drools [14] as rule engine in the analysis phase ,

3) TOSCA [15] as orchestration and topology specification in the plan-

ing phase , and (4) Cloudify [16] as cloud orchestration and configura-

ion management system in the execution phase .

In our validations, InfraComposer performs reconfigurations and

daptations through rescaling of cloud resources. We employed a policy-

ased approach for the analysis and the planning phase. We consider

wo styles of rescaling:

• Vertical rescaling supports to add more (or remove) resources to

a single node in a system [17] . The middleware reconfigures re-

sources to become larger or smaller resources. For example, a

virtual machine with 2 CPU cores and 4 GB of RAM is reconfig-

ured to 8 CPU cores and 8 GB of RAM.

• Horizontal rescaling supports to add more (or remove) nodes to

a distributed system [17] . The middleware reconfigures the de-

ployment plans to duplicate the nodes. For example, one experi-

ment executes over 16 virtual machines instead of 4 virtual ma-
chines. p

Table 2

Configuration details of each execution round

are provided by the engineer, but the other s

based on the adaptation scenarios and policie

the MAPE-K look which contains 45 experime

wire harness routing calculation) at a time in t

is specific domain knowledge, and InfraCompo

large experiment.

vCPU RAM (GB) Nodes Inten

Step 1 2 16 5 Mem

Step 2 4 8 10 CPU

Step 3 4 4 15 CPU

41
In the following sections, we revisit the use cases and validate the

daptation scenarios and monitoring results leveraging our adaptive and

eflective middleware.

.1. Electrical wiring interconnection system design

Following 3 different iterations (steps) in the MAPE-K loop, we per-

ormed some experiments presenting a number of adaptation scenarios.

e assume that an engineer has made a set of inappropriate assump-

ions about the workflow and its requirements in each scenario. Each

tep is an iteration of the MAPE-K loop.

.1.1. Scenario 1: The workflow is memory intensive

The engineer annotates the wire harness tool as memory intensive,

ut the reflective monitoring shows that the tool does not load a very

arge chunk of data to the memory before and during the workflow exe-

ution. Consequently the deployment plan is altered to scale down and

o employ virtual machines with a lower amount of memory.

In step 1, the workflow engineer specifies both direct deployment

nd resource consumption annotations. The former includes the use of

he wire harness optimization tool, a single installation per node, a total

f five worker nodes, and a shared storage for geometrical data. The lat-

er describes the workflow as memory and network intensive. The work-

ow is then sent to InfraComposer to deploy the cloud infrastructure.

s depicted in Fig. 8 , the execution then starts and the workflow en-

ine (the master node) sends optimization jobs to the worker nodes.

iven the above configuration, the total execution took 62.37min (see

able 2).

The engineer then wants to re-execute the workflow with more ex-

eriments. InfraComposer monitored the execution of step 1, and it
of the EWIS workflow. Step1 settings

teps are reconfigured by InfraComposer

s. Each execution step is an iteration of

nts. Each node can take a job (optimal

his use case. The number of experiments

ser observes the 45 experiments as one

siveness Execution Jobs per VM

ory Network 62.37 min 9

Network 33.10 min ∼5

Network 22.02 min 3

E. Heydari Beni, B. Lagaisse and W. Joosen Journal of Systems Architecture 95 (2019) 36–46

Table 3

Policy-based adaptation scenarios based on execution history. The system performance analysis is performed us-

ing the Utilization Saturation and Errors (USE) [18] methodology. Aggregated values are maximum values, and

VMs.load_average maps to the system load during the last one-minute periods in Linux.

S Adaptations Policies

1 – Assumption: memory intensive – Adaptation: scale up/down the VM

2 – Assumption: CPU intensive – Adaptation: scale up/down the VM

3 – Assumption: few number of nodes – Adaptation: scale in/out the VMs

Fig. 9. Different steps of the EWIS case: free memory vs. swapping.

p

c

f

i

a

t

a

4

i

d

t

s

Fig. 10. CPU utilization and load average of the workers and the master node.

Master node has 4 cores. Each core is a virtual core.

c

m

s

T

l

l

n

a

u

t

ersisted the monitoring data after deep inspection of different pro-

esses, jobs, and system-wide metrics.

The monitoring component aggregates memory-related metrics (e.g.,

ree, swap memory, etc.), and it transfers the results to the policy engine

n order to enforce the business rules (see Table 3). As shown in Fig. 9 ,

 large portion of the memory remained unused in step 1. Therefore,

he virtual machine has been resized to employ less memory in order to

void over provisioning.

.1.2. Scenario 2: The workflow is not CPU intensive

The workflow (i.e., the wire harness optimization task in particular)

s not annotated to be compute-bound, but the reflective monitoring

ata shows that the nodes and the tools utilize more than a particular

hreshold. More specifically, the virtual machine load average depicts

ystem saturation by having a load number higher than the number of
42
ores. Therefore, the deployment plan is updated to scale up and employ

ore cores.

To re-execute the workflow after step 1, InfraComposer enforces

ome compute-related rules using its policy engine (see scenario 2 in

able 3). Fig. 10 illustrates the CPU utilization as well as the system

oad during the last one-minute periods (Linux load average 1min). The

atter indicates system saturation and it should normally be less than the

umber of cores. In step 1, the virtual machine employed 2 cores and

ccordingly the system is saturated. Therefore the workflow is reconfig-

red to employ 4 cores instead, both for step 2 and step 3. As a result,

he system load remained below 4 (the number of cores).

E. Heydari Beni, B. Lagaisse and W. Joosen Journal of Systems Architecture 95 (2019) 36–46

Table 4

Configuration details of each execution round of the hinge system design and opti-

mization workflow. Step1 settings are provided by the engineer, but the other steps

are reconfigured by InfraComposer based on the adaptation scenarios and policies.

Each execution step contains 45 experiments.

vCPU RAM (GB) Nodes Intensiveness Execution Jobs per VM

Step 1 8 16 1 Memory CPU 109.20 min 315

Step 2 4 8 5 Disk 22.23 min 63

Step 3 2 4 10 Disk 12.12 min ∼32

Step 4 2 4 14 Disk 9.75 min ∼23

Fig. 11. Cluster-wide bandwidth utilization of the network where the shared

volume is operating.

4

v

t

w

t

p

t

i

i

i

t

w

s

j

q

h

r

m

n

c

l

w

(

s

f

n

T

T

n

t

c

4

s

n

Fig. 12. The Hinge System case: average free memory vs. memory swapping in

different steps.

(

d

l

o

m

4

b

i

t

S

f

4

r

l

w

(

o

s

C

1 Since the workflow has Windows-based worker nodes, there was no load

average metric in place. The OS of the master node is Linux for both use cases.
.1.3. Scenario 3: The workflow needs few number of nodes

The engineer anticipates that the horizontal scale of the wire harness

irtual machines should be limited. He has to comply with his quota of

otal number of cores and memory in the distributed setup, and initially

ants it to be deployed cheaply on a few number of instances. However,

he reflective monitoring shows that there are a considerable number of

arallel runs (i.e., scheduled jobs) due to the large size of input parame-

ers and datasets (about the physical features of the aircraft). This results

n a long-running overall execution. Consequently, the deployment plan

s reconfigured to scale out the nodes in number and scale them down

n memory size. As such the workflow can employ more instances of

he tools, and can thus satisfy the expected execution time requirement

hile respecting quota and budget.

Policies in Table 3 for scenario 3 present horizontal re-scaling con-

traints as rules. In addition to execution time and number of accepted

obs per VM (9 jobs per VM in step 1), networking metrics, licensing and

uota limitations are important too. Cluster-wide bandwidth utilization

as an actual upper limit, and reaching that limit causes network satu-

ation in terms of packet loss, networking errors and segments retrans-

issions. Furthermore, there should be available resources in the master

ode due to the execution of the workflow and the job scheduling. Poli-

ies make sure that the master node is not saturated in terms of average

oad, available memory, and disk IO rates.

Fig. 11 illustrates the cluster-wide bandwidth utilization of the net-

ork where the shared volume is operating. The maximum inbound rate

34.9 MB/s in step 1 (not shown), 54.5 MB/s in step 2 and 84 MB/s in

tep 3) is lower than the overall bandwidth of the network, and there-

ore packet loss was negligible. In addition, disk IO utilization of the

odes were 52.4% in step 1, 74.82% in step 2 and 70.05% in step 3.

he network latency of the shared volume has impact on these values.

herefore the policy engine scaled out and reconfigured the number of

odes to 10 in step 2 and 15 in step 3, and accordingly the execution

ime was 29.27min faster in step 2 and 40.25min faster in step 3 in

omparison with step 1.

.2. Design of the hinge system of an aircraft rudder

This workflow employs seven engineering tools. These tools are re-

ponsible for meshing and stress analysis of different hinge compo-

ents. Similar to the previous use case to obtain an optimized result
43
see Section 4.1), the workflow goes through iterative executions with

ifferent input design variables.

The overview of the different experiments and results results are

isted in Table 4 . In step 1, the tools are annotated to be collocated

n a single, large, powerful node, and the entire workflow is presumed

emory and CPU intensive.

.2.1. Scenario 1: The workflow is memory intensive

The engineer annotates the entire workflow as memory intensive,

ut the reflective monitoring shows overprovisioning of resources. As

llustrated in Fig. 12 , the policy engine of InfraComposer scales down

he deployment plan from 16 GB memory in step 1 to 4 GB memory in

tep 3. As a result, the execution has a smaller yet more cost-effective

ootprint. Policies are listed in scenario 1 of Table 3 .

.2.2. Scenario 2: The workflow is CPU intensive

The engineer annotates the workflow to be compute-bound, but the

eflective monitoring shows that the compute resources are underuti-

ized. In step 1, the deployment plan is set to employ 8 virtual cores,

hich results in maximum utilization of 7.2% for 315 sequential jobs

see Fig. 13). For re-execution of the workflow, the policies of the sec-

nd scenario (see Table 3) trigger the InfraComposer configurator to

cale down from 8 cores in step 1 to 2 cores in step 3. However, the

PU still remains unsaturated 1

E. Heydari Beni, B. Lagaisse and W. Joosen Journal of Systems Architecture 95 (2019) 36–46

Fig. 13. Maximum CPU utilization of the VMs and the tools.

Fig. 14. System load average and percentage of Disk I/O utilization of the mas-

ter node which has 4 vCPUs and 8 GB RAM.

4

c

e

w

I

t

i

c

n

t

r

1

t

(

f

n

i

v

i

“

d

w

i

r

a

2

t

f

5

5

m

m

e

n

T

b

m

d

e

t

e

i

5

g

m

s

r

w

s

p

i

E

s

W

t

p

[

a

m

5

o

C

c

c

m

n
.2.3. Scenario 3: The workflow needs few number of nodes

The engineer anticipates that a larger virtual machine is more effi-

ient than a higher quantity of nodes. That results in an undesirable ex-

cution time of 109.20min. Beside other metrics, deep inspection of the

orkflow execution shows that this node received 315 jobs. Therefore,

nfraComposer reconfigures the deployment plan to scale out horizon-

ally and yet stay compliant with quota limitations when the engineer

ntends to re-execute the workflow.

As listed in Table 3 , horizontal resource rescaling is constrained by

luster-wide metrics (e.g., overall bandwidth utilization) and master-

ode metrics (e.g., load average, free memory and disk I/O utiliza-

ion). The network bandwidth utilization of the cluster has an acceptable

ate of 7.8 KB/s in step 1, 39.1 KB/s in step 2, 293 KB/s in step 3, and

00 KB/s in step 4. As illustrated in Fig. 14 , (a) and (b) represent the sys-
44
em load average during the last one-minute periods of the master node

i.e., with a maximum value of 1.4 in step 1 and 1.9 in step 4). There-

ore, the master node remained unsaturated while managing 14 worker

odes. Furthermore, the master node never experienced memory pag-

ng, and it had free memory in all of the steps (i.e., with a maximum

alue of 6.4 GB in step 1, 6.1 GB in step 2, 5.8 GB in step 3 and 5.9 GB

n step 4). Lastly, the Linux manual [19] defines disk I/O utilization as

percentage of CPU time during which I/O requests were issued to the

evice (bandwidth utilization for the device). Device saturation occurs

hen this value is close to 100% ”. As depicted in Fig. 14 , the percentage

s around 12% in step 1 and 26% in step 4 at peak load moments.

As a result, the policy engine triggers the configurator component to

esize the number of nodes to 5 in step 2, 10 in step 3 and 14 in step 4,

nd accordingly the execution time was reduced with 86.97min in step

, 97.08min in step 3, and 99.45min in step 4. The distributed setup

hus indeed scales well horizontally and the workflow executes much

aster in comparison with step 1.

. Related work

.1. Execution environment reproducibility

Reproducibility and repeatability of workflow execution environ-

ent are crucial aspects in scientific and engineering workflow deploy-

ent. In that regard, Santana-Perez et al. [20] describe the execution

nvironment of workflows using semantic vocabularies to produce an-

otated workflows (i.e., logical preservation of execution environment).

OSCA [15] is an OASIS standard to describe the topology of cloud-

ased applications towards portable, reproducible application deploy-

ents. Qasha et al. [21] combine two execution-environment repro-

ucibility techniques (i.e., the logical and physical preservation) of sci-

ntific workflows using TOSCA in a container-based approach. In addi-

ion to the plain reproducibility concerns, our middleware architecture

mploys reflection concepts to reconfigure deployment plans, resulting

n efficient execution environments.

.2. Reflective middleware

The concept of reflection was first introduced by Smith [22] in pro-

ramming languages. Other works [23,24] adopted the concept in the

iddleware platforms, focusing on reconfigurability and openness of

uch systems. Blair et al. [23] present two types of reflection: structural

eflection and behavioural reflection . Structural reflection is concerned

ith the structure and the content of the component, which is repre-

ented by two distinct meta-models, namely the encapsulation and com-

osition meta-models. Behavioural reflection is concerned with activity

n the system, which is represented by the environmental meta-model.

xisting literature [25] extends the architecture by presenting the re-

ource meta-model to address the reification of resource management.

eyns et al. [26] present a comprehensive reference model for dis-

ributed self-adaptive systems with a special attention to the reflection

erspective. As applications of the reflection concepts in web services,

27,28] present adaptive and reflective middleware systems which are

ble to expose their functionalities to application developers. Our meta-

odels are inspired by these studies.

.3. Auto-scaling of cloud resources

Deployment plans are reconfigured by rescaling of resources based

n execution history, either horizontally or vertically. A recent survey by

hen et al. [8] classifies the decision making tactics of the self-adaptive

loud autoscaling systems into three major approaches: (i) rule-based

ontrol, (ii) control theoretic approaches and (iii) search-based opti-

isation. Alternatively, Lorido et al. [11] categorise auto-scaling tech-

iques generally into reactive (i.e., based on rules and current data) and

E. Heydari Beni, B. Lagaisse and W. Joosen Journal of Systems Architecture 95 (2019) 36–46

p

g

f

s

s

c

p

d

w

p

a

d

5

w

c

a

d

e

e

a

t

i

a

f

c

d

a

6

o

t

i

6

i

t

v

c

r

t

j

o

o

c

s

t

e

e

f

m

6

b

S

o

t

m

t

t

a

(

i

f

t

fi

d

s

p

o

i

w

o

c

i

t

fl

a

c

e

e

c

c

d

(

h

e

t

t

7

t

t

i

n

n

b

d

s

h

a

n

a

a

t

w

S

t

R

roactive (i.e., based on prediction) approaches, as well as a more fine-

rained classification, resulting in: (1) threshold based rules, (2) rein-

orcement learning, (3) queuing theory, (4) control theory, and (5) time

eries analysis. Recently, Dhuraibi et al. [29] conducted a comprehen-

ive survey on elasticity in cloud computing with a special attention to

ontainers. InfraComposer employed a policy-based, history-driven ap-

roach akin to the threshold-based approach. Thresholds are statically

efined, similar to the other existing literature [30–33] . Most related

ork [31,32] use single or multiple metrics, but Hasan et al. [34] em-

loyed several metrics from several domains such as compute, storage

nd network. InfraComposer also forms its policies based on multiple

omains varying from workflow primitives to various cloud primitives.

.4. Scientific workflows in the cloud

Among open challenges of migration and execution of scientific

orkflows on the cloud [35] , computation and data management are

rucial. Processing large scientific data has impact on execution mech-

nism of the workflow engines. Kacsuk et al. [36] present efficient

ata pipelines by using a service choreography concept instead of the

nactor-based workflow concept. Furthermore, data locality has influ-

nce on performance and overall execution time [37,38] . Regarding

daptive execution of the workflow in the cloud, Oliveira et al. [39] in-

roduce an adaptive approach to dynamically tuning the workflow activ-

ty size to achieve better performance, and Wang et al. [40] present an

daptive workflow management through dynamic iterative optimisation

ramework. Although engineering workflows are inherently different in

omparison to scientific workflows, some of the challenges regarding

ata management and adaptive execution share common requirements

nd concerns.

. Limitations and future opportunities

In this section, we outline our design decisions and future research

pportunities regarding (i) the granularity of componentization, and (ii)

he policy-based decision making mechanism in the context of engineer-

ng workflow cloudification.

.1. Granularity of Componentization

InfraComposer is presented with virtual machines as the granular-

ty of componentization; however, the concepts presented in the archi-

ecture are not necessarily tied to any specific component model (e.g.,

irtual machines or containers). Our future work includes applying the

oncepts presented in this paper to a containerised environment, which

equires few considerations: (i) the reflective architecture and in par-

icular the meta models (e.g., the resource meta model) should be ad-

usted to the new settings. (ii) The current architecture relies on a cloud

rchestrator and a unified, modular, reusable deployment topology and

rchestration specification such as TOSCA. Since mapping TOSCA to

ontainers is not fully realised [41] , there is a need for such an abstract

pecification enabling the integration with the state of practice con-

ainer orchestration systems (e.g., Kubernetes, Mesos, Docker Swarm,

tc.). (iii) Engineering workflows employ diverse set of domain tools ex-

cutable on various operating systems; therefore, containers should be

ully supported in those operating systems. (iv) Lastly a new autoscaling

echanism should be proposed in this context.

.2. Dynamic Adaptation Policies

The current InfraComposer architecture is based on a policy-

ased approach to define rules and in particular their thresholds (see

ection 3.3, 4). This approach heavily relies on the domain knowledge

f engineering workflows in order to prepare the policies, and on top of

hat, thresholds are statically defined. To dynamize the decision making
45
achanism, Chen et al. [8] classifies the state of the art into (i) con-

rol theoretic approaches and (ii) search-based optimisation. The con-

rol theoretic approaches (e.g., Kalman control, Fuzzy control or PD)

re well studied; however, they fall short of handling multi-objectivity

e.g., execution time, cost, etc.) and performing well where many rescal-

ng decisions are supposed to be made.

On the contrary, search-based optimisation approaches such as rein-

orcement learning are promising based on the recent surveys [8,11] . In

his context, the complex nature of the engineering workflows cloudi-

cation and the vast optimisation space makes these approaches can-

idate to approach the problem. The optimisation space spans from

ingle application configurations to co-location of services on nodes,

rocessing components (VM or container), storage, networking, and so

n. These tactics are appropriate because of well-studied related work

n the domain of auto-scaling with regard to multi-objectivity through

eighted sum, Pareto relation, and so forth, which is a requirement in

ur context.

Cloudification of engineering workflows requires a hybrid-level of

ontrol granularity (e.g., cloud resources and application level) entail-

ng a large number of cloud primitives to monitor and tune in the adap-

ation process. Selecting relevant features to tune for the running work-

ow at hand is not an easy and trivial task to do manually. Therefore,

n automatic detection of distinguishing abstract features in the exe-

ution history is an important improvement in this process (e.g., Chen

t al. [42] ; vPerfGuard [43]).

In summary, we envision the roadmap of a smarter deployment and

xecution of engineering workflows on the cloud within the MAPE-K

ontrol loop, which encompasses (i) exploring different granularity of

omponentization including containers and VMs; (ii) employing a smart,

ynamic decision making approach such as search-based optimisation;

iii) detecting distinguishing features for the problem (workflow) at

and and their correlations with the given objectives; and lastly (iv)

valuating and validating the outcome in synthetic and most impor-

antly real world cases and scenarios such as what has been achieved in

his work regarding the policy-based approaches.

. Conclusions

In this paper, we introduced InfraComposer, a policy-driven, adap-

ive and reflective middleware, which enables simulation and optimiza-

ion workflows to achieve smart and optimized deployment on cloud

nfrastructures. Our step-wise approach includes: (i) obtaining the engi-

eers’ input about initial, direct deployment of workflows through an-

otations in the first place, and (ii) the acquisition of new knowledge

ased on the actual execution history employed to produce improved

eployments. Policies encapsulate knowledge of cloud engineers and

ystem administrators to optimize the deployments based on execution

istories. Such policies reason about a time series of reflective data and

ct upon it by reconfiguring and resizing the execution environment for

ext iterations of the engineering workflow. As a validation and evalu-

tion, we presented specific adaptive deployment scenarios in real-life

pplication cases in the domain of aeronautics. We validated how both

he reflective and the adaptation capabilities of the middleware can cope

ith each scenario.

upplementary material

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.sysarc.2019.03.001 .

eferences

[1] P. Mell , T. Grance , The NIST definition of cloud computing, 2011 .

[2] E.H. Beni , B. Lagaisse , W. Joosen , Adaptive and reflective middleware for the cloud-

ification of simulation & optimization workflows, in: Proceedings of the 16th Work-

shop on Adaptive and Reflective Middleware, ARM ’17, ACM, New York, NY, USA,

2017, pp. 2:1–2:6 .

https://doi.org/10.1016/j.sysarc.2019.03.001
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0009a
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0009a
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0009a
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0001

E. Heydari Beni, B. Lagaisse and W. Joosen Journal of Systems Architecture 95 (2019) 36–46

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[3] M.F.M Hoogreef , Advise, formalize and integrate MDO architectures: a methodology

and implementation, 2017 .

[4] A.R. Kulkarni, Development of Knowledge Based Engineering Tool to Support Fin-

rudder Interface Design and Optimization, Master’s Thesis, in: Delft University of

Technology, Faculty of Aerospace Engineering.

[5] P. Voigt , A. Von dem Bussche , The EU general data protection regulation (GDPR),

A practical guide, 1st Ed., Cham: Springer International Publishing, 2017 .

[6] G. Bracha , D. Ungar , Mirrors: design principles for meta-level facilities of objec-

t-oriented programming languages, in: ACM SIGPLAN Notices, Vol. 39, ACM, 2004,

pp. 331–344 .

[7] P. Grace , G. Coulson , G.S. Blair , B. Porter , A distributed architecture meta-model

for self-managed middleware, in: Proceedings of the 5th workshop on Adaptive and

reflective middleware (ARM’06), ACM, 2006 .

[8] T. Chen , R. Bahsoon , X. Yao , A survey and taxonomy of self-aware and self-adaptive

cloud autoscaling systems, ACM Comput. Surv. (CSUR) 51 (3) (2018) 61 .

[9] J.O. Kephart , D.M. Chess , The vision of autonomic computing, Computer 36 (1)

(2003) 41–50 .

10] F.D. Macías-Escrivá, R. Haber , R.D. Toro , V. Hernandez , Self-adaptive systems: a sar-

vey of current approaches, research challenges and applications, in: Expert Systems

with Applications, volume 40, 2013, pp. 7267–7279 .

11] T. Lorido-Botran , J. Miguel-Alonso , J.A. Lozano , A review of auto-scaling tech-

niques for elastic applications in cloud environments, J. Grid Comput. 12 (4) (2014)

559–592 .

12] S.K. Jensen , T.B. Pedersen , C. Thomsen , Time series management systems: a survey,

IEEE Trans. Knowl. Data Eng. 29 (11) (2017) 2581–2600 .

13] F. Lee, Architectural points of extension and scalability for the elk stack, 2018,

https://fabianlee.org/2016/11/28/ , accessed.

14] P. Browne , JBOss Drools Business Rules, Packt Publishing Ltd, Birmingham, B27

6PA, UK, 2009 .

15] Topology and Orchestration Specification for Cloud Applications (TOSCA) Primer

Version 1.0., OASIS, 2013 .

16] Cloudify – Pure-Play Cloud Orchestration and Automation Based on TOSCA. Ac-

cessed 20 April 2017. https://cloudify.co/ .

17] H. El-Rewini , M. Abd-El-Barr , Advanced Computer Architecture and Parallel Pro-

cessing, Vol. 42, John Wiley & Sons, Hoboken, New Jersey, USA, 2005 .

18] B. Gregg , Thinking methodically about performance, Commun. ACM 56 (2) (2013)

45–51 .

19] S. Godard. iostat(1) - linux man page .

20] I. Santana-Perez , R.F.d. Silva , M. Rynge , E. Deelman , M.S. Pérez-Hernández , O. Cor-

cho , Reproducibility of execution environments in computational science using se-

mantics and clouds, Future Gener. Comput. Syst. 67 (2017) 354–367 .

21] R. Qasha , J. Ca ł a , P. Watson , A framework for scientific workflow reproducibility in

the cloud, in: E-science (E-science), in: 2016 IEEE 12th International Conference on,

IEEE, 2016, pp. 81–90 .

22] B.C. Smith , Procedural Reflection in Programming Languages, Massachusetts Insti-

tute of Technology, 1982 Ph.d. thesis .

23] G.S. Blair , G. Coulson , P. Robin , M. Papathomas , An architecture for next generation

middleware, in: Jochen Seitz (Ed.), Proceedings of the IFIP International Conference

on Distributed Systems Platforms and Open Distributed Processing (Middleware ’98),

Springer-Verlag, London, UK, UK, 2009, pp. 191–206 .

24] M. Roman, F. Kon, R.H. Campbell, et al., Reflective middleware: from your desk to

your hand, IEEE Distributed Systems.

25] G. Blair , F. Costa , G. Coulson , F. Delpiano , H. Duran , B. Dumant , F. Horn , N. Parla-

vantzas , J.B. Stefani , The design of a resource-aware reflective middleware architec-

ture, in: Meta-Level Architectures and Reflection, Springer, 1999, pp. 115–134 .

26] D. Weyns , S. Malek , J. Andersson , Forms: unifying reference model for formal speci-

fication of distributed self-adaptive systems, ACM Transactions on Autonomous and

Adaptive Systems (TAAS) 7 (1) (2012) 8 .

27] T. Furtado , E. Francesquini , N. Lago , F. Kon , A middleware for reflective web service

choreographies on the cloud, in: Proceedings of the 13th Workshop on Adaptive and

Reflective Middleware, ACM, 2014, p. 9 .

28] E.H. Beni , B. Lagaisse , W. Joosen , Wf-interop: adaptive and reflective rest interfaces

for interoperability between workflow engines, in: Proceedings of the 14th Interna-

tional Workshop on Adaptive and Reflective Middleware, ACM, 2015, p. 1 .

29] Y. Al-Dhuraibi , F. Paraiso , N. Djarallah , P. Merle , Elasticity in cloud computing: state

of the art and research challenges, IEEE Trans. Serv. Comput. 11 (2) (2018) 430–447 .

30] M. Maurer , I. Brandic , R. Sakellariou , Enacting slas in clouds using rules, in: Euro-

pean Conference on Parallel Processing, Springer, 2011 .

31] X. Dutreilh , A. Moreau , J. Malenfant , N. Rivierre , I. Truck , From data center resource

allocation to control theory and back, in: Cloud Computing (CLOUD), 2010 IEEE 3rd

International Conference on, IEEE, 2010 .

32] R. Han , L. Guo , M.M. Ghanem , Y. Guo , Lightweight resource scaling for cloud ap-

plications, Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM In-

ternational Symposium on, IEEE, 2012 .
46
33] R. Han , M.M. Ghanem , L. Guo , Y. Guo , M. Osmond , Enabling cost-aware and adap-

tive elasticity of multi-tier cloud applications, Future Gener. Comput. Syst. 32 (2014)

82–98 .

34] M.Z. Hasan , E. Magana , A. Clemm , L. Tucker , S.L.D. Gudreddi , Integrated and au-

tonomic cloud resource scaling, Network Operations and Management Symposium

(NOMS), 2012 IEEE, IEEE, 2012 .

35] Y. Zhao , X. Fei , I. Raicu , S. Lu , Opportunities and challenges in running scientific

workflows on the cloud, in: Cyber-Enabled Distributed Computing and Knowledge

Discovery (CyberC), 2011 International Conference on, IEEE, 2011, pp. 455–462 .

36] P. Kacsuk , J. Kovács , Z. Farkas , The flowbster cloud-oriented workflow system to

process large scientific data sets, J. Grid Comput. 16 (1) (2018) 55–83 .

37] S.N. Srirama , J. Viil , Migrating scientific workflows to the cloud: through graph-par-

titioning, Scheduling and Peer-to-Peer Data Sharing, IEEE, 2014 .

38] S. Caíino-Lores , A. Lapin , P. Kropf , J. Carretero , Methodological approach to

data-centric cloudification of scientific iterative workflows, in: International Con-

ference on Algorithms and Architectures for Parallel Processing, Springer, 2016,

pp. 469–482 .

39] D. de Oliveira , E. Ogasawara , K. Ocaña , F. Baião , M. Mattoso , An adaptive parallel

execution strategy for cloud ‐based scientific workflows, Concurr. Comp-Pract. E. 24

(13) (2012) 1531–1550 .

40] L. Wang , R. Duan , X. Li , S. Lu , T. Hung , R.N. Calheiros , R. Buyya , An iterative op-

timization framework for adaptive workflow management in computational clouds,

in: Trust, Security and Privacy in Computing and Communications (TrustCom), 2013

12th IEEE International Conference on, IEEE, 2013, pp. 1049–1056 .

41] P. Derek, T. Kapil, Understanding tosca and containers, in: OASIS.

42] T. Chen , R. Bahsoon , Self-adaptive and online qos modeling for cloud-based software

services, IEEE Trans. Softw. Eng. 43 (5) (2017) 453–475 .

43] P. Xiong , C. Pu , X. Zhu , R. Griffith , Vperfguard: an automated model-driven frame-

work for application performance diagnosis in consolidated cloud environments, in:

Proceedings of the 4th ACM/SPEC International Conference on Performance Engi-

neering, ACM, 2013, pp. 271–282 .

Emad Heydari Beni is a Ph.D. candidate in the Department of

Computer Science at KU Leuven in Belgium, and a member of

the research group imec-DistriNet. His research activities are

under the supervision of Prof. Dr. Wouter Joosen and Dr. Bert

Lagaisse. He received his Master’s degree in computer science

from the University of Antwerp in 2014. His main research

interests are in the area of adaptive and reflective middleware,

cloud platforms and applied cryptography.

Bert Lagaisse is industrial research and valorization manager

at the imec-DistriNet research group in which he manages a

portfolio of applied research projects on cloud technologies

and security middleware in close collaboration with industrial

partners. He has a strong interest in distributed systems, in

enterprise middleware, cloud platforms and security services.

He obtained his MSc in computer science at KU Leuven in 2003

and finished his Ph.D. in the same domain in 2009.

Wouter Joosen is a full professor in distributed software sys-

tems at the Department of Computer Science of KU Leuven,

Belgium. He obtained a Ph.D. degree from KU Leuven in 1996.

He has also co-founded spin-off companies of KU Leuven: Lu-

ciad, a company specializing in software components for Geo-

graphical Information Systems, and Ubizen (now part of Veri-

zon Business Solutions), where he has been the CTO from 1996

till 2000, and COO from 2000 till 2002. His current research

interests are in distributed systems and cloud computing, fo-

cusing on software architecture and adaptive middleware, as

well as in security aspects of software.

http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0009b
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0009b
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0009c
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0009c
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0009c
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0005
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0005
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0005
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0006
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0006
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0006
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0006
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0006
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0007
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0007
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0007
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0007
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0008
https://fabianlee.org/2016/11/28/
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0009
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0009
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0009d
https://cloudify.co/
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0011
https://linux.die.net/man/1/iostat
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0014
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0014
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0029a
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0029a
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0029a
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0029a
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0029a
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0024
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0025
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0029b
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0029b
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0029b
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0029b
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0029c
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0029c
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0029c
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0029c
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0029c
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0029c
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0030
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0030
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0030
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0030
http://refhub.elsevier.com/S1383-7621(18)30098-5/sbref0030

	Infracomposer: Policy-driven adaptive and reflective middleware for the cloudification of simulation & optimization workflows
	1 Introduction
	2 Motivation and use cases
	2.1 Electrical Wiring Interconnection System (EWIS)
	2.2 Design of the hinge system of an aircraft rudder

	3 The infracomposer middleware
	3.1 Annotation-based deployment
	3.2 Reflective capabilities and meta-models
	3.3 Policy-driven adaptive architecture
	3.4 Monitoring data management
	3.4.1 Monitoring data management components
	3.4.2 Scalability of the stack

	4 Prototype implementation and use case validation
	4.1 Electrical wiring interconnection system design
	4.1.1 Scenario 1: The workflow is memory intensive
	4.1.2 Scenario 2: The workflow is not CPU intensive
	4.1.3 Scenario 3: The workflow needs few number of nodes

	4.2 Design of the hinge system of an aircraft rudder
	4.2.1 Scenario 1: The workflow is memory intensive
	4.2.2 Scenario 2: The workflow is CPU intensive
	4.2.3 Scenario 3: The workflow needs few number of nodes

	5 Related work
	5.1 Execution environment reproducibility
	5.2 Reflective middleware
	5.3 Auto-scaling of cloud resources
	5.4 Scientific workflows in the cloud

	6 Limitations and future opportunities
	6.1 Granularity of Componentization
	6.2 Dynamic Adaptation Policies

	7 Conclusions
	Supplementary material
	References

