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ABSTRACT
The simulation and optimization of complex engineering de-
signs in automotive or aerospace involves multiple mathe-
matical tools, long-running workflows and resource-intensive
computations on distributed infrastructures.

Finding the optimal deployment in terms of task distri-
bution, parallelization, collocation and resource assignment
for each execution is a step-wise process involving both hu-
man input with domain-specific knowledge about the tools
as well as the acquisition of new knowledge based on the
actual execution history.

In this paper, we present motivating scenarios as well as
an architecture for adaptive and reflective middleware that
supports smart cloud-based deployment and execution of en-
gineering workflows.

This middleware supports deep inspection of the work-
flow task structure and execution, as well as of the very
specific mathematical tools, their executions and used pa-
rameters. The reflective capabilities are based on multiple
meta-models to reflect workflow structure, deployment, ex-
ecution and resources. Adaptive deployment is driven by
both human input as meta-data annotations as well as the
actual execution history of the workflows.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design; H.1 [Models and
Principles]: Miscellaneous
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1. INTRODUCTION
Engineers in major industries, such as aerospace and au-

tomotive, use simulation and optimization workflows to cre-
ate, simulate and optimize complex designs. Such workflows
are complex and long running processes, which are typically
composed of various software tools and services, to simulate
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and optimize physical properties such as strength, vibra-
tions, geometrical decomposition or material selection. En-
gineers use different hardware to execute these workflows,
e.g. their desktop computers or High Performance Comput-
ing (HPC) clusters.

Current situation. Desktop computers have limited ca-
pacity in terms of processors, memory and storage. In addi-
tion, the parallel execution of the experiments is tied to the
number of available computers. HPC clusters, unlike desk-
top computers, are very efficient and powerful, but they are
constructed with dedicated expensive hardware and their
capacity is still limited. Besides, time slot reservation and
complex queuing API are yet another hassle for those with
long-running or recurring experiments.

A quick example. For example, civil engineers employ evo-
lutionary optimisation algorithms to minimise the mass and
maximum stress of truss bridges. To execute these work-
flows, they need to have lots of resources in place such as suf-
ficient processing power, memory, storage and network con-
nectivity, as well as necessary set of analysis tools. To speed
up the process, parts (or all) of the workflows should be ar-
ranged to be performed in parallel, meaning that multiple
instances of tools as well as multiple servers and networking
resources are needed to be available beforehand. Last but
not least, truss analysis is executed recurrently with differ-
ent parameters. Engineers typically change the algorithms
and parameters, and execute the experiments multiple times
to obtain a desirable output. These variations might require
the adaptation of the underpinning infrastructure and work-
flow deployment.

The promise of the cloud. Engineers can nowadays ben-
efit from cloud computing to gain on-demand access to the
required resources for their workflows, often based on cheap
commodity hardware. Cloud computing is a model for en-
abling on-demand network access to a shared pool of config-
urable computing resources (e.g. networks, servers, storage,
applications, and services) [9]. Configuration management
and cloud orchestration are also useful emerging paradigms
in this domain. Software configuration management tools
enable practitioners to specify configurations, configuration
items and other attributes of a server and all of the re-
quired software. Cloud orchestrations empower clients to
compose architecture, tools, processes, and their connections
as workflows in order to provision the required cloud-related
resources such as virtual machines, virtual networks, and
required infrastructure software and middleware platforms.
As such, the infrastructure and deployment process become
completely composable and programmable.
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Figure 1: Middleware for cloudifying simulation workflows

Challenges. There are still key problems and challenges
when deploying and executing engineering workflows in the
cloud. One needs to automate the deployment, as well as
support smart scaling and execution of simulation and opti-
mization workflows in the cloud. For each deployment and
execution of the workflow, this process includes adaptive de-
ployment to collocate, separate and parallelize the different
tasks and their specific tools on the right amount and the
right type of nodes. Both can also variate depending on the
specific parameters for a certain execution. Automating this
process includes:

• Automatic determination of required resource types in
the private or public cloud, e.g., virtual machines, op-
erating systems, storage volumes, virtual network, etc.

• Automatic estimation of the amount of cloud resources,
e.g., number of virtual machines and processors, amount
of memory, storage capacity, etc.

• Automatic bootstrapping of required infrastructure and
deployment of analysis software and tools.

InfraComposer: towards smart deployment in the cloud. To
address these challenges, we present a reflective and adap-
tive middleware that enables and manages smart, adap-
tive workflow deployment, scaling and execution in the cloud.
We leverage both the domain-specific knowledge about the
concrete tools that are used, and deep inspection of these
tools when deployed and executing on the cloud platform.

The adaptive middleware is driven by both input from
the engineers about the properties of the tools they use, as
well as execution history of these tools. The input from
the engineers is specified as annotations on the workflows,
and is based on human knowledge and assumption about
the tools with regards to CPU usage, memory usage and
network usage. The execution history over time will be used
to optimize the original deployment and scaling plan, and
thus to further adapt to actual real execution knowledge (see
Fig. 1).

As such, our middleware defines two key contributions to
existing orchestration and deployment middleware:

1. Annotation-driven resource reservation and deployment
planning. Based on the annotations in the workflow,
an initial deployment plan will be generated. A de-
ployment plan is a topology and orchestration specifi-
cation for a cloud application which can be executed
by a cloud orchestrator.

2. History-driven predictive scaling and reconfiguration.
In addition, the middleware adapts the configurations
of the deployment plans based on the execution history
of the workflows using previous results. This should be
done based on statistical analysis of the execution his-
tory, or even more advanced machine learning tactics
such as predictive algorithms or clustering.

To achieve this, the reflective meta-models in the
middleware enable reification of

1. key architectural concepts such as workflows, tasks1,
specific tools and their deployment,

2. key execution concepts such as specific tool executions
with specific parameters, and

3. key resource utilisation concepts such as nodes, cores,
cpu time, memory, storage and network metrics.

The rest of this paper is structured as follows. Section 2
presents two motivating scenarios of engineering workflows
and their common patterns. Section 3 describes the archi-
tecture and the concepts of the middleware. Section 4 vali-
dates multiple adaptive (re)deployment scenarios. Section 5
presents the state-of-the-art in cloudification of workflows,
adaptive middleware, and auto-scaling techniques. Section 6
concludes this paper and outlines our research outcomes and
future work.

2. MOTIVATION AND USE CASES
Engineers usually run workflows many times with different

parameters. In this section, we describe two examples of
such workflows from different domains.

Truss structural analysis.
Civil engineers typically perform multi-objective optimi-

sation of truss structural analysis to accomplish various goals
by using an evolutionary optimisation algorithm, e.g. to
minimise mass and maximum stress. This workflow consists
of tools such as Truss Dynamic and Truss Static to simulate
and optimize the strength and size of the bridge.

Motivating Scenario. When considering the tasks in the
workflow, it is unclear how Truss Dynamic and Truss Static
should be deployed: on a single node or on different nodes.
The most optimal deployment is achieved in a step-wise
adaptive process, first driven by the engineer’s annotations,
then by the execution history of the tool.

(i) First, the engineer of the workflow specifies that both
Truss Dynamic and Truss Static are disk-intensive tools be-
cause they read and write large files from disk, and they
communicate using these files on disk. At least, this is
the engineer’s assumption. He defines this assumed knowl-
edge as annotations. (ii) The middleware will collocate the
two tools and all parallel executions on one virtual node in
the cloud and execute them as specified in the workflow.
(iii) However, execution history shows that the tools are
mostly CPU intensive. In the actual deployment environ-
ment, the directory used to store and read files is a high-
-bandwidth network attached storage device, which reduces
IO latency and throughput of the workflow compared to the
limited throughput of a virtual drive on a local disk. As
such, the execution of whole workflow on one node becomes
CPU bound rather than IO bound. (iv) The deployment
plan should be updated to distribute the different execu-
tions over multiple virtual machines.

Electrical wiring interconnection system design.
Another multidisciplinary design optimisation (MDO) ex-

ample can be found in the design process of aircrafts. One
of the important steps of this process focuses on electrical

1We use the terms tasks and activities interchangeably.



wiring interconnection system (EWIS) design. Engineers
design and execute complex wire routing simulation experi-
ments to find an optimised solution.

Motivating scenario. This workflow employs a very large
amount of data of physical features of an aircraft as input
which results in lots of parallel runs. Therefore, the number
of nodes and tools instances are unclear to an engineer.

(i) First, the engineer of the workflow specifies five in-
stances of the nodes, and an expected execution time. (ii) The
middleware will instantiate the nodes and execute the exper-
iment as specified in the workflow. (iii) However, the exe-
cution history shows that the execution took much longer
than the initial anticipation because of the large number of
parallel runs and scheduled jobs. (iv) The deployment plan
should be updated to adjust the number of nodes (auto-s-
caling) with regards to the expected execution time.

Section 4 presents more scenarios. Based on each of these
workflows, a similar pattern emerges:

• The deployment middleware needs initial domain knowl-
edge about the tools to achieve a first deployment plan.

• Actual executions of the tool with specific parameters
might require optimisation of the deployment plan.

• Most of these workflows need different discipline anal-
ysis tools for execution, and each tool could be in-
stalled on a specific operating system and specific host
type (memory-focused host, CPU-focused host or high-
performing storage hosts with SSDs).

• A lot of these workflows are computationally intensive,
and their execution sometimes takes hours, days or
weeks to be completed. Engineers use parallel runs
to speed up the execution. That may have impact on
network topology too.

• Most of these workflows are involved in a continuous
improvement process by reconfiguration of the parame-
ters, and recurring re-executions to fulfil the optimised
objectives. As such, the actual parameters of the ex-
ecutions might require adaptation of the deployment
as tools might become more dependent on CPU than
disk for different parameters.

These common patterns introduce several key problems
and challenges (refer to Section 1) leading to manual, dupli-
cate, complex, time-consuming work for engineers.

3. THE INFRACOMPOSER MIDDLEWARE
This section presents InfraComposer, a reflective and adap-

tive middleware that deploys all cloud and software resources
based on the given annotations within engineering work-
flows.

During execution, it collects runtime information about
task executions and the underpinning infrastructure by re-
flective monitoring of resources, as well as deep inspection of
software tools. It therefore enables the middleware to recon-
figure the deployment plans predictively to be adaptive for
recurrent execution of the workflows based on the execution
history.

The InfraComposer middleware consists of four main com-
ponents to address the aforementioned challenges in Sec-
tion 1 (see Fig. 2): (i) a workflow manager component
to expose a workflow deployment API and to identify the
annotated tasks and their annotations, (ii) a configurator

component to generate configurations based on given anno-
tations with respect to execution history data, (iii) a de-
ployment plan composer component to produce deployment
plans based on elementary deployment modules for the cloud
orchestrator and to initiate the deployment, and (iv) a mon-
itoring component to store live monitoring data of workflow
execution.
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Figure 2: Overview of the proposed middleware with the
annotation processing and configuration components.

The rest of this section is structured as follows. First,
we describe the annotation-based adaptive deployment. We
then elaborate on the reflective capabilities and the meta-
models. Third, we conclude with a discussion on adding
intelligence and new knowledge to ”smart” adaptive middle-
ware.

3.1 Annotation-based Deployment
A simulation and optimisation workflow is a group of tasks

that, once completed, will accomplish some objectives. As
explained in Section 1, these tasks employ different analysis
tools, which are responsible for the execution. Workflows
and tasks can be annotated to provide more information
about the required resources. InfraComposer is capable of
identifying these annotations in the workflow manager com-
ponent to provide necessary information for the configurator
component. There are two categories of annotations: direct-
deployment and resource-consumption annotations.

Direct-deployment annotations. These annotations
provide the middleware with direct information concerning
deployment of workflows on the cloud. The crucial aspects
described by annotations are the employed analysis tools,



Category Annotation
Disk Disk intensive percentage

Required disk space GB
Data locality location

Memory Memory intensive percentage
Required RAM GiB

Processor CPU intensive percentage
GPU intensive percentage
Required cores number of cores

Network Network intensive percentage
Required bandwidth Mbps

Table 1: Four main categories of resource-consumption an-
notations.

their deployment locations and number of instances. Tools
can either be collocated or separately deployed on the nodes.
For example, annotations could describe that some tools
should be deployed on one node, others on individual nodes,
and there should be five instances of each node. Further-
more, network-related annotations can propose a networking
scheme for tools and nodes where necessary. For example,
network-level segregation of nodes can be achieved for a net-
work intensive workflow.

Another direct-deployment annotation is the identifier of
the existing resources (e.g. instance images, volumes, net-
working components, etc.). For instance, some of the engi-
neering tools need human involvement during the installa-
tion process, or install slowly due to the size of the packages.
Therefore, these tools can be installed and prepared as vir-
tual machine images to speed up the deployment process.
The unique identifiers of the images help the configurator
component provide configurations to the deployment plan
composer component.

Resource-consumption annotations. These annota-
tions provide general, approximate information about the in-
frastructural resource requirements of the tools with regard
to disk, memory, processor and network. The four main cat-
egories of resource-consumption annotations are presented
in Table 1.

Workflows can specify whether the experiment is disk in-
tensive, as well as the required space. Cloud providers, ei-
ther private or public, offer various types of storage sys-
tems with varying capabilities, speed, etc. In addition, some
clients are concerned about data locality due to the enter-
prise policies or governmental law (e.g. GDPR[4]). Such
annotations guide InfraComposer to select appropriate stor-
age options with respect to the given constraints.

The computationally intensive workflows should employ
proper virtual machines in order to get executed efficiently
and to minimise the interference with other co-existing cloud
users. Some virtual machines share the physical proces-
sors with other tenants, and some have CPU-pinning, mean-
ing that the virtual cores are mapped to the physical cores
in a shared-nothing approach. Besides, some public cloud
providers offer domain-specific types of virtual machines such
as accelerated instances with GPU.

Furthermore, parallel execution of workflows may have
considerable network overhead due to the continuous trans-

fer of large chunks of data. That can easily saturate the
bandwidth, slow down the execution, and interfere with
other co-existing users. Such annotations enable the mid-
dleware to compose appropriate network architectures based
on the available networking infrastructure.

3.2 Reflective Capabilities and Meta-models
The middleware follows the temporal correspondence ap-

proach into different meta-models [3]. There are four styles
of reflection in InfraComposer represented by four meta-
models, namely structural, deployment, execution and re-
source reflection.

Structural Reflection. Structural reflection [5] results
in a meta-model of the different static concepts in the work-
flows defined by the engineers, which represents the struc-
ture of workflows and tools within the middleware and the
execution history. Fig. 3 illustrates the meta-model. This
meta-model describes engineering workflows and composi-
tion of activities and tools, as well as annotations.

Figure 3: The structural meta-model.

Deployment Reflection. Deployment reflection results
in a meta-model representing and reifying the concepts in
the deployment model. Fig. 4 illustrates the deployment
plan and the mappings between workflows, activities, tools
(not illustrated), and cloud-based components such as com-
pute nodes, storage and networking elements. The com-
ponents are (re)configurable through configuration files by
InfraComposer at run-time.

Figure 4: The deployment meta-model.

Execution Reflection. Execution reflection results in a
meta-model of the execution of activities and specific tools
on specific nodes. This model reifies concepts such as exe-
cution per workflow, execution per activity, and execution
per tool with respect to the given parameters (see Fig. 5).

Resource Reflection. Resource reflection results in a
meta-model of the underpinning cloud infrastructure resources
and domain resources (see Fig. 6). Cloud infrastructure re-
sources include concepts such as processing (cores), compute
nodes, memory, network and storage, which are reified for
each execution by consumption pattern. Such reflection al-
lows the monitoring and adaptation phase to benefit from
coarse-grained or deep introspection of resources, leading to
more efficient resource allocation in the future execution of
the workflows.



Figure 5: The execution meta-model.

Figure 6: The resource meta-model.

3.3 Towards Smart Adaptation
InfraComposer monitors the execution of the workflows

and builds an execution history, with which it fine-tunes the
deployment plan and the configurations to make the future
executions more efficient. Adding intelligence to the smart
adaptation capabilities of the middleware requires the acqui-
sition of new knowledge about the execution of the different
tasks and tools. For example, an annotation suggested that
a tool was disk intensive, but execution history teaches us
that it is CPU intensive and only uses two cores for input
files smaller than 100 MB.

InfraComposer is a (self-)adaptive middleware following
the MAPE-K [6] architecture of self-adaptive systems [8].

Figure 7: Adaptive middleware using MAPE-K control loop.

The monitoring phase collects information from the cloud
and workflow-specific resources. The analysis phase uses
the persisted monitoring data to assess the previous execu-
tions and to determine potential future improvements. The
planning phase reconfigures the deployment plans, using the
history-driven predictive scaling propositions produced in
the previous phase. The execution phase redeploys the cloud
resources and the software tools for another execution. The
knowledge about the workflows, and the cloud infrastructure
(i.e. public/private providers, available types of resources,
the existing resources, etc.) is a cross-cutting aspect serving

information to each phase.
For smart adaptation and auto-scaling of resources, the

analysis and the planning phase are crucial. Auto-scaling
techniques are categorised into two classes: reactive and
proactive [7]. Reactive techniques are concerned with the ad-
justment of deployment plans and resource allocation based
on certain thresholds, and proactive approaches attempt to
predict and anticipate the efficient configurations.

Static policy-based techniques are an example of the prac-
tical reactive techniques. For example, if a processing metric
driven by statistics based on the execution history exceeds
a particular threshold defined in the rules, showing that the
activity is a computationally intensive task, the configura-
tor could reconfigure the deployment plan for that node to
employ CPU-focused virtual machines.

The key open challenge is finding the right applicable
method to detect this additional knowledge from the exe-
cution history.

• Basic statistical analysis, such as the average execution
time of a certain tool.

• Machine learning, such as clustering techniques to try
and detect the distinguishing features in the execution
history.

• Deep learning, which can automatically detect distin-
guishing abstract features in the execution history.

We assume advanced machine learning tactics are needed to
detect key differentiating features in the execution history.
Finding the right algorithms is part of our future work.

4. IMPLEMENTATION AND VALIDATION
In this section we describe some specific adaptive deploy-

ment scenarios and validate how both the reflective capabil-
ities as well as the adaptation capabilities of the middleware
can cope with each adaptive deployment scenario. As a val-
idation of the concepts and architecture of InfraComposer,
we created a middleware and, on top of it, prototyped the
EWIS design (refer to Section 2) as our engineering work-
flow. We employed a policy-based approach for the analysis
and the planning phase. We assume that the engineer has
made an inappropriate assumption about the workflow and
its requirements in each scenario.

Scenario 1. We assume that some activities within the
workflow are not annotated to be compute-bound, but the
reflective monitoring data shows that the nodes and the tools
consume more than a particular threshold. Therefore, the
deployment plan is updated to employ CPU-focused virtual
machines for those activities (or more cores).

Scenario 2. We assume that some tools are not anno-
tated to be memory intensive, but the reflective monitoring
shows that the simulation tools load a very large chunk of
data to the memory before and during the processing. Con-
sequently the deployment plan is altered to scale up and
to employ memory-focused virtual machines with a larger
amount of memory.

Scenario 3. We assume that the workflow is not an-
notated to be data- or network-intensive, but the reflective
monitoring shows that the nodes perform lots of I/O op-
erations on the shared volume. Therefore, the deployment
plan is reconfigured to change the network configurations,
and to join the nodes to a high-bandwidth network that of-
fers faster shared storage volumes, which is in our case the
NetApp storage solution.



Scenario 4. We assume that the workflow is annotated to
deploy two of the analysis tools on one node, but the deep
reflective monitoring data shows that both tools consume
CPU higher than a particular threshold. The deployment
plan is then updated towards separate deployment of the
tools on individual nodes.

Scenario 5. We assume that some of the tools are antic-
ipated to be deployed cheaply on a few number of instances,
but the reflective monitoring shows that there are consider-
able number of parallel runs (i.e. scheduled job) due to the
large size of input parameters and datasets (about the phys-
ical features of the aircraft), which results in a long-running
overall execution. Consequently the deployment plan is re-
configured to scale out the nodes and to employ more in-
stances of the tools to satisfy the expected execution time
requirement.

5. RELATED WORK
Reproducibility and repeatability of workflow execution

environment are crucial aspects in scientific and engineer-
ing workflow deployment. In that regard, Santana-Perez
et al. [12] describe the execution environment of workflows
using semantic vocabularies to produce annotated workflows
(i.e. logical preservation of execution environment). TOSCA
[14] is an OASIS standard to describe the topology of cloud-
based applications towards portable, reproducible applica-
tion deployments. Qasha et al. [10] combine two execution-
environment reproducibility techniques (i.e. the logical and
physical preservation) of scientific workflows using TOSCA
in a container-based approach. In addition to the plain re-
producibility concerns, our middleware architecture employs
reflection concepts to reconfigure deployment plans, result-
ing in efficient execution environments.

The concept of reflection was first introduced by Smith [13]
in programming languages. Other works [1, 11] adopted
the concept in the middleware platforms, focusing on recon-
figurability and openness of such systems. Blair et al. [1]
present two types of reflection: structural reflection and be-
havioural reflection. Structural reflection is concerned with
the structure and the content of the component, which is
represented by two distinct meta-models, namely the encap-
sulation and composition meta-models. Behavioural reflec-
tion is concerned with activity in the system, which is rep-
resented by the environmental meta-model. Existing litera-
ture [2] extends the architecture by presenting the resource
meta-model to address the reification of resource manage-
ment. Our meta-models are inspired by these studies.

Deployment plans are reconfigured by re-scaling of re-
sources based on execution history, either horizontally or
vertically. Lorido et al. [7] categorise auto-scaling techniques
into reactive (i.e. based on rules and current data) and
proactive (i.e. based on prediction) approaches, as well as a
more fine-grained classification, resulting in: (1) threshold
based rules, (2) reinforcement learning, (3) queuing theory,
(4) control theory, and (5) time series analysis. Our vision is
to employ a hybrid technique, e.g. combining the threshold-
based rules with the time series analysis.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced InfraComposer which enables

complex simulation and optimisation workflows to have smart
deployment and scalable execution on cloud infrastructures.

To this end, we proposed a step-wise approach to achieve an
optimal deployment plan for such workflows. The approach
includes: (i) obtaining engineers’ input about initial, direct
deployment of workflows through annotations in the first
place, and (ii) the acquisition of new knowledge based on
the actual execution history employed to produce improved
deployments. The adaptive and reflective architecture fol-
lowed the temporal and ontological correspondence [3] ap-
proach into four different meta-models, namely structural,
deployment, execution and resource reflection. As a valida-
tion of the concepts, the applicability, and the reproducibil-
ity of our approach, we presented some specific adaptive
deployment scenarios and validated how both the reflective
and the adaptation capabilities of the middleware can cope
with each scenario.

The future work includes the further validation of Infra-
Composer in more extensive workflows, as well as conduct-
ing comprehensive performance evaluation with regard to
deployment adaptations. The other research direction in-
cludes usage of additional deployment constraints via anno-
tations, and exploring their impact on the adaptive process
of obtaining optimal deployments (e.g. budget constraints).
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