
WF-Interop: Adaptive and Reflective REST Interfaces for
Interoperability between Workflow Engines

Emad Heydari Beni, Bert Lagaisse, Wouter Joosen
iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium

{emad.heydaribeni, bert.lagaisse, wouter.joosen}@cs.kuleuven.be

ABSTRACT
Software service providers are evolving towards a business
process outsourcing (BPO) model to benefit from specialised
services and facilities of external partners. Activation of
external processes as well as having long-term and coarse-
grained interaction with the outsourced processes results
in remote workflow interactions between heterogeneous and
federated workflow systems.

WF-Interop aims at addressing the interoperability issues
by defining a set of REST interfaces that enable standard-
ised communication between these workflow engines. The
WF-Interop interface focuses on deployment, activation and
progress monitoring of workflows. It intends to be an in-
terface for new as well as the existing workflow engines in
order to expose their functionalities in a RESTful architec-
ture. Amongst all functionalities proposed by WF-Interop,
some may not be supported by some engines. As such, our
standard API should be adaptive to the capabilities of each
workflow engine and be reflective to the consumers by de-
scribing supported capabilities on demand.

As a validation of the principles and architecture of WF-
interop, we created a proof-of-concept middleware and pro-
totyped an accounting workflow with outsourced billing work-
flow on top of it using jBPM[13] and Ruote[9] workflow en-
gines.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design; H.1 [Models and
Principles]: Miscellaneous

General Terms
Design, Standardization

Keywords
Workflow Systems, Interoperability, Heterogeneity, REST,
Adaptability , Reflectivity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ARM 2015, December 07-11, 2015, Vancouver, BC, Canada
Copyright 2015 ACM. ISBN 978-1-4503-3733-5/15/12 ...$15.00
DOI: http://dx.doi.org/10.1145/2834965.2834966.

1. INTRODUCTION
A lot of online software service providers, i.e. application

service providers (ASP) and software-as-a-service providers
(SaaS), are evolving towards a business process outsourcing
(BPO) model. BPO refers to the systematic and controlled
delegation of many steps of a company’s business processes
to a specialized online software service provider.

For example, many companies are outsourcing the busi-
ness process of invoicing their customers to specialized providers
(see Figure 1). In the traditional approach, on-premise work-
flow systems to manage the billing process are using the
online web services of a document management provider to
create, layout, send and receive invoices to their customers.
This billing workflow will have fine-grained, synchronous in-
teractions with this document service to create, send, update
and resend the invoices when these are not paid.

In a BPO context, this whole billing process is outsourced
to a billing provider. The company consuming the service of
the billing provider now only has a long-term, coarse-grained
interaction with the billing process: start the billing process
of a customer and notify me when the customer has paid.
While such a long-term interaction is running for weeks, the
company might ask or receive intermediate updates about
the billing process, such as bill sent, bill resent, or bill paid.

Figure 1: Outsourcing the billing process.

As illustrated in this example, business process outsourc-
ing results in decentralized business process flows between
companies and involves long term remote interactions be-
tween these work flows. Each of these companies typically
has its own business process middleware (BPM) to sup-



port its automated business processes, such as jBPM[13],
Ruote[9] or WWF[10]. BPO thus results in remote workflow
interactions between heterogeneous and federated workflow
systems.

Another example can be found in the design process of
cars. Engineers follow a predefined business process when
designing a part of a car (e.g. a door). This business pro-
cess is typically a series of human tasks such as designing a
3D model of a door, then applying a mesh structure to it,
etc. Now and then, the engineer wants to evaluate his de-
sign, e.g. by simulating the influence of vibrations or noise.
This requires a remote simulation workflow with specialized
scientific algorithms, offered as a service by a specialized
company. Such a simulation can take weeks. Hence, the
engineer would like to get updates about the progress of the
simulation, e.g. in terms of steps that are completed or just
in terms of percentage.

In each of these applications, a similar pattern emerges:

1. There are two federated parties (e.g. two companies)
with heterogeneous workflow technologies (e.g. a jBPM
workflow engine and a workflow engine for scientific
simulations).

2. The first party starts a remote workflow on the second
party’s workflow system, and awaits its result. This is
typically a long term process that can take weeks or
months.

3. The first party wants to follow up on the progress now
and then. This inspection interaction can be a pull
request by the first party or a push notification by
the second party. The progress inspection is typically
decoupled from the internal task implementation of the
remote workflow and expressed in a higher abstraction,
e.g. payment pending or simulation 65% completed.

However, this similar pattern has to be implemented over
and over again in each application, and for each type of
workflow. Current workflow middleware only coordinates
and supports short-term remote interactions such as syn-
chronous or asynchronous calls to web services via SOAP
or REST, on top of which the application-specific long-term
interaction needs to be implemented.

Such a frequently occurring, long-term remote interaction
between heterogenous workflow technologies requires (screams
for) middleware support, on which workflow applications can
leverage to reuse the long-term remote interaction pattern,
including intermediate inspection via push or pull.

In this paper we introduce WF-interop. WF-Interop de-
fines a set of interfaces that enable standardized commu-
nication between federated and heterogeneous workflow en-
gines. The WF-Interop API focusses on deployment, acti-
vation and progress monitoring of workflows.

The WF-interop interfaces define both a reflective and
adaptive middleware for workflows.

• Depending on the workflow engine, and the actual
workflow, the interface of the middleware adapts and
publishes the supported operations at that moment.
(e.g. the pause operation for a workflow is only ex-
posed if the workflow engine supports it and if a work-
flow is actually running.)

• Running workflows can be inspected in terms of higher
application-specific abstractions, depending on the type

of workflow. WF-interop supports both a pull and a
push model for state inspection.

Next to these advanced features, WF-interop also defines
basic operations for workflow engines, such as:

• Workflow engines can be inspected for which types of
workflows a specific engine supports.

• Workflow engines can be asked to create new workflow
types (via the deployment interface).

• Workflow engines can be contacted to instantiate new
workflow instances (via the activation interface).

The contribution of WF-interop is threefold. First, WF-
interop introduces a standardized management interface for
workflow engines to enable interoperability. Second, it in-
troduces a reflective and adaptive approach to support dis-
coverability, evolvability and adaptability of engine manage-
ment interfaces. Third, to increase industry adoption, the
WF-interop interfaces are currently supported in a REST-
based architecture between workflow engines, but also lever-
age well-known principles such as Hypermedia as the Engine
of Application State (HATEOAS) as a novel technique to
support adaptive management interfaces in middleware.

The rest of this paper is structured as follows. Section 2
describes the main principles and the rationale behind WF-
Interop interfaces. Section 3 introduces a set of RESTful in-
terfaces with a particular attention to HATEOAS constraint
of REST architecture. Section 4 validates the aforemen-
tioned concepts in a middleware and a prototype applica-
tion. Section 5 compares our approach with related work
and existing systems. Section 6 concludes this paper and
outlines our research outcomes.

2. WF-INTEROP PRINCIPLES
WF-Interop aims to standardize the communication be-

tween federated and heterogeneous workflow engines with
an adaptive and reflective approach to enable discoverabil-
ity and evolvability of the management interfaces.

Figure 2: Sequence of resources and their actions.

WF-Interop promises self-discoverability of functionalities
for consumers without the necessity of having static doc-
umentation. It assumes that workflow engines contain re-
sources such as deployments, activations and progress moni-
toring as shown in figure 2. Various actions can be executed
on these resources which may bring the execution flow as
well as the internal states of the enactment engine to a dif-
ferent state. Upon execution of each action on a resource,
WF-Interop guides consumers by proposing next possible
moves in the form of resources and their actions based on
the current application state. Consumers are able to read
a short on-demand description for each of the proposed ac-
tions in order to figure out the protocol, input properties and
a brief description of the semantics of the action. They may



traverse the application state by invoking these proposed
actions on the same or the other resources.

This mechanism introduces API evolvability for workflow
engine providers in terms of new functionalities on top of
WF-Interop. WF-Interop can be adopted as a base inter-
face. Later on, new resources along with their necessary
actions can be defined and added to the appropriate ap-
plication states. The newly added resources are discover-
able by the navigational information sent back to the con-
sumer upon each action invocation. Workflow engines come
with different capabilities; some may not cover all minimum
functionalities defined by WF-Interop. The aforementioned
mechanism enables all providers with different levels of sup-
port to be adaptive to the current state of their production.

3. WF-INTEROP REST ARCHITECTURE
In this section, we propose a RESTful interface, called

WF-Interop, to standardize the communication between fed-
erated and heterogeneous workflow engines. In addition, we
transform our proposed interface to an adaptive and reflec-
tive solution by using Hypermedia as the Engine of Applica-
tion State, known as HATEOAS.

WF-Interop focuses on four fundamental aspects of work-
flow engine interactions: (1) deployment of workflow defini-
tions, (2) activation and (3) progress monitoring of process
instances within workflow systems including (4) observers.

According to our study based on runtime interfaces of sev-
eral workflow engines and Workflow Management Coalition
(WfMc) standards, the workflow definition deployment and
its related functions are the first necessary requisite in our
RESTful api proposal. In the first draft of the deployment
interface as listed in table 1, one can deploy, undeploy, mod-
ify, delete, and fetch workflow definitions.

The second interface provides activation functionalities for
workflow process instances. The fundamental methods for
these resources are listed in the table 2. It includes function-
alities such as instantiation, aborting, pausing and resuming
of process instances.

The last interface, specified in table 3, provides progress
monitoring for workflow process instances. This interface
standardizes the interactions between enactment engines to
support progress reporting in a push and a pull model.

WF-Interop, as described in the previous paragraphs, aims
at addressing interoperability issues of workflow engines in
a RESTful architecture. The rationale behind REST archi-
tectures is described in Roy Fielding’s dissertation [4] and
the fourth layer of the Richardson Maturity model [5]. One
of the principles in REST is to utilize Hypermedia as the
Engine of Application State (HATEOAS). HATEOAS is de-
scribed as a constraint of REST and supports the aforemen-
tioned architectural features proposed by WF-Interop such
as self-discoverability, evolvability and adaptability.

As illustrated in figure 3, WF-Interop resources are depen-
dent on each other and each resource has a set of actions.
Relying on Hypermedia[12] based principles, one is able to
start from one of these resources and explore the remainder
of the dependency graph based on the current state of the
application. In other words, consumers of the workflow en-
gine are supposed to receive a list of possible actions after
execution of an action. These proposed actions come with
on-demand documentations enabling the clients to navigate
the API’s without any prior knowledge about interaction
with workflow engines. For instance, one may execute a GET

Figure 3: RESTful WF-Interop

method on the Activation resource in order to fetch a long
running business process. Depending on the current appli-
cation state of the process and the policies of the enactment
engine, WF-Interop may respond back some other actions in
Hypermedia format such as links to methods of the progress
monitoring resource for more comprehensive reporting or
links to obtain intermediate results. All of the suggested
links are based on each engine’s capabilities which makes
the RESTful WF-Interop adaptive to all engines.

This architecture is change tolerant in the sense that work-
flow engines are able to either implement new functionalities
or even deprecate some actions by manipulation of hyper-
media links propositions. For example, some engines can
implement some extra methods on top of the Progress re-
source for additional capabilities and add those actions as
links to the response bodies upon proper Activation method
calls.

4. VALIDATION
As a validation of the principles and architecture of WF-

interop, we created a proof-of-concept middleware and, on
top of it, prototyped an accounting workflow with outsourced
billing workflow. The goal of this validation is to illustrate
the adaptability and the reusability of the different layers
in the middleware to support long-term remote interactions
between heterogeneous workflow technologies.

We first provide more details about the accounting work-
flow and the different workflow technologies. Then we dis-
cuss the layered architecture.

In one of the activities of the accounting business pro-
cess, the host workflow engine outsources the billing pro-
cess to another engine. Since the billing process might be a
long running process, the accounting process typically has
a coarse grained interaction with the billing process at the
application level (the top-level workflow). However, the ac-
counting process will get intermediate on-demand progress
updates based on the current state of the process instance
running on remote workflow engine. This progress informa-
tion is about the shipment (e.g. bill-sent, bill-resent, etc.)
and the current state of the payment (e.g. paid, not-yet-
paid, etc.). Upon termination of the remote billing process,
the results become available to the accounting process and
it continues the rest of its activities.

We used the jBPM workflow engine for the accounting
process and the Ruote workflow engine for the billing process
in order to have heterogeneous engines. Besides, all of the
interactions are done using WF-Interop interfaces. In figure
4, the four-layer architecture of the prototype is illustrated.

Application layer. In the top layer (4), i.e. the appli-
cation layer, the accounting process is defined with all of
its relevant activities. As shown in figure 5, the first and



Table 1: Workflow Deployment Resources
Method URI
GET /deployments/ Get all Workflow definitions
POST /deployments/ Deploy a Workflow definition
GET /deployments/{id} Get a Workflow definition
PUT /deployments/{id} Update a Workflow definition
DELETE /deployments/{id} Undeploy a Workflow definition

Table 2: Workflow Activation Resources
Method URI
GET /activations/ Get all workflow process instances
POST /activations/ Start a workflow process instance
GET /activations/{id} Get a workflow process instance
DELETE /activations/{id} Abort a workflow process instance
PUT /activations/{id}/pause Pause a workflow process instance
PUT /activations/{id}/resume Resume a workflow process instance

Table 3: Workflow Progress Resources
Method URI
GET /progress/{processInstanceID} Get the current state of a workflow process instance
GET /progress/{processInstanceID}/observers/ Get the list of observers
POST /progress/{processInstanceID}/observers/ Subscribe an observer
DELETE /progress/{processInstanceID}/observers/{observerID} Unsubscribe an observer

Figure 4: Outsourcing the billing process.

second activities are Human Tasks[11] responsible for user
input such as selection of required steps in the billing process
and billing information. The last activity, shown as Remote
Billing, is responsible for outsourcing the billing process us-
ing the acquired input arguments. At this level, there is
no dependency to WF-Interop and the complexity of inter-
face discoverability, adaptability and intermediate progress
updates is encapsulated in the (reusable) middleware layers
underneath.

Engine layer. The third layer, i.e. the engine layer, is the
top-level middleware layer that offers an abstraction towards
the application layer to execute remote workflows as a single,
long-term interaction. This layer is application-independent
(no concept of accounting or billing), but it is technology-
specific. The abstraction that is offered is specific to execute
remote Ruote workflows from a jBPM engine.

This abstraction supports the high level execution of Ruote
engine instructions on top of WF-Interop. The abstraction
itself depends on the activation and progress resources in
WF-interop, and has the form of a reusable sub-process[11]
in jBPM. This sub-process will be executed as a child pro-

cess of the Remote Billing activity in the application layer.
The sub-process contains an algorithm to handle all the logic
with regard to progress updates as well as discoverability and
adaptivity of the remote engine’s interface.

As such, the engine layer is decoupled from the accounting
logic provided in the application layer and encapsulates the
algorithm as a reusable sub-process for managing remote
Ruote engines and Ruote process instances within the jBPM
engine. As shown in figure 6, all of the interactions are based
on HATEOAS navigational information upon execution of
each instruction.

Next, we illustrate this algorithm for instantiating a re-
mote workflow asynchronously. When a Create-Process

is executed, the actual instantiation of the process is asyn-
chronous. Hence, as long as the process is not started com-
pletely in the Ruote engine (i.e. asynchronous instanti-
ation), the proposed instructions are limited to Get and
Abort. As soon as the process instance is effectively started,
there are more instructions available that can be executed
in this current state of the process instance (e.g. Pause). As
discussed in previous sections, this mechanism makes the in-
teractions adaptable to the capabilities of workflow engines
at different process states.

This algorithm is implemented as a jBPM process and
executed as a sub-process of the parent process in the ap-
plication layer. A simplified version of the sub-process is
illustrated in figure 7.

Basic WF-interop layer. In the second layer, the basic
WF-Interop resources and their associated operations are
supported. This layer contains reusable middleware sup-
port in the form of WF-interop proxy objects. WF-Interop
proxies hold information like process definition identifica-
tion, process instance identification, a generic key-value dic-
tionary for process variables, etc. Each of the WF-Interop
activities, as shown in figure 7, is implemented as a jBPM
activity in the form of a custom work item, and the native
jBPM data is mapped to the WF-Interop proxies. These



Figure 5: Layer 4 - Accounting Process including a Billing Business Process Outsourcing.

Figure 6: Layer 3 - Process creation and inspection

custom work items can be reused in order to create different
layers on top, such as our engine layer. This layer is also re-
sponsible for JSON[3]/XML marshalling and unmarshalling,
for example, when a progress report is received from the
Ruote engine. After unmarshaling the data received from
Ruote, HATEOAS based instructions in the form of links
are obtained.

REST Transport layer. The first layer, i.e. the bot-
tom transport layer, is using standard REST technology to
transport the engine instructions and related data. More
specifically, this layer sends instructions and data with con-
tent type application/hal+json[8] over the HTTP protocol
in a RESTful service architecture.

Content type application/hal+json is an extension to
the application/json[2] content type that supports some
extra fields representing further possible instructions in the
form of hypermedia links[12]. As shown in code listing 1,
this is how a response looks like when one creates a pro-
cess in the Ruote engine via WF-Interop. The process:get

and process:abort are custom link relations and the href

is pointing to the proposed resource. Each of the hyperme-
dia links comes with an on-demand execution and seman-
tic description. In order to fetch each documentation, the
curies[1] syntax has been used. In other words, if one wants
to invoke the abort instruction, the process:abort relation
should be used. Firstly, the resource URI can be obtained
from the href field of the link. Afterwards, by inspecting the
proper curie regarding the abort relation, some necessary

information becomes available such as the semantics of the
abort function and the associated engine behaviour, input
arguments like process instance identification, etc. As listed
in table 4, several resources are defined within WF-Interop
for this purpose.

Listing 1: POST /activations/
{ . . .

” l i n k s ” : {
”proce s s : get ” : {

” t i t l e ” : ”Fetch the proce s s ” ,
”h r e f ” : ”/ a c t i v a t i o n s /1234 ” } ,

”p roce s s : abort ” : {
” t i t l e ” : ”Abort the proce s s ” ,
”h r e f ” : ”/ a c t i v a t i o n s /1234 ” } ,

” c u r i e s ” : [{
”h r e f ” : ”<process−doc−ur l >/{ r e l } ” ,
”name” : ”p roce s s ” ,
”templated ” : true

} ]}}

Table 4: Workflow Relation Resources
Method URI
GET /rels/ Get all relation types
GET /rels/deployment/{rel} Get a relation descrip-

tion of the deployment
type

GET /rels/process/{rel} Get a relation descrip-
tion of the process type

GET /rels/progress/{rel} Get a relation descrip-
tion of the progress
type

5. RELATED WORK
The Workflow Management Coalition (WfMc) published

an XML based protocol called Wf-XML[14] which is an ex-
tension of the ASAP[6] protocol for runtime integration of
process engines. WF-XML enables the consumers to have a
standardized communication with workflow engines by out-
lining a set of pre-defined instructions based on SOAP mes-
sages. The properties of each instruction are opened up
to the consumer by get-properties instructions, but in-
structions themselves are not discoverable. Hence, it is not
adaptable to the engine-specific capabilities.

In a study of B2B business process integration[7] , the
authors recommend three approaches for process integra-
tion: (1) workflow system interoperability (e.g. Wf-XML),
(2) web service choreography and (3) a multi-phase process
composition approach. The recommended approach is the
latter which is a combination of the former ones. This study
is also based on the SOAP protocol. This approach has some
level of controllability by introducing public and private pro-
cesses, but still does not address adaptability and change
tolerance to the workflow engine’s API.

In the SHIWA[15] project, the interoperability of scien-
tific workflow systems gets addressed using a coarse grained



Figure 7: Layer 4 - Ruote Activation

platform by hiding engines and representing workflow ab-
stracts instead. Hiding engines in the context of scientific
workflows based on this platform might be acceptable, but
in business process outsourcing may not. In addition, if any
of the underlying engines does changes in its API’s, it needs
further development at the platform side to be adaptive to
the recent changes. In other words, engines are not decou-
pled from the platform itself.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced WF-Interop which enables

standardized communication between federated and hetero-
geneous workflow engines. It enables workflow engines to
outsource workflow processes to external parties and mon-
itor their progress. WF-Interop defines RESTful interfaces
for inter-engine communication and supports discoverability
and evolvability of an engine’s interface. WF-interop lever-
ages HATEOAS (Hypermedia as the Engine of Application
State), a well-known constraint of Fielding’s REST architec-
ture. This mechanism makes WF-Interop adaptable to the
capabilities of many engines (e.g. jBPM and Ruote) and
supports that engines evolve with new features.

We validated WF-interop in a proof-of-concept middle-
ware and illustrated its use with an accounting workflow
that outsources the billing workflow between a jBPM and
Ruote workflow engine. Both engines remained unchanged
while all WF-Interop middleware support could be modu-
larised in reusable software assets such as application inde-
pendent sub-processes and workflow activities. Our future
work includes the further validation of WF-interop in two
industry applications - as introduced in the introduction of
this paper.

7. REFERENCES
[1] M. Birbeck and S. McCarron. Curie syntax 1.0. W3C

Candidate Recommendation CR-curie-20090116,
January, 2009.

[2] D. Crockford. The application/json media type for
javascript object notation (json). 2006.

[3] S. Ecma. Ecma-262 ecmascript language specification,
2009.

[4] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
2000. AAI9980887.

[5] M. Fowler. Richardson maturity model: Steps toward
the glory of rest. 2010.

[6] J. Fuller, M. Krishnan, K. Swenson, and J. Ricker.
Oasis asynchronous service access protocol (asap),
2005.

[7] J.-Y. Jung, H. Kim, and S.-H. Kang. Standards-based
approaches to b2b workflow integration. Comput. Ind.
Eng., 51(2):321–334, Oct. 2006.

[8] M. Kelly. Json hypertext application language. 2013.

[9] J. Mettraux, K. Kalmer, R. Meyers, H. de Mik,
A. Kohlbecker, M. Barnaba, G. Neskovic, N. Stults,
O. Pudeyev, M. Gfeller, et al. Ruote-a ruby workflow
engine.

[10] M. Milner. A developer’s introduction to windows
workflow foundation (wf) in. net 4. Retrieved from: on
Oct, 11(2010):47, 2009.

[11] B. P. Model. Notation (bpmn) version 2.0. OMG
Specification, Object Management Group, 2011.

[12] M. Nottingham. Rfc5988: Web linking. Internet
Engineering Task Force (IETF) Request for
Comments, 2010.

[13] RedHat. jbpm business process management suite.

[14] K. D. Swenson, S. Pradhan, M. D. Gilger,
M. Zukowski, and P. Cappelaere. Wf-xml 2.0 xml
based protocol for run-time integration of process
engines. Workflow Management Coalition, 2004.

[15] G. Terstyanszky, T. Kukla, T. Kiss, P. Kacsuk,

Á. Balaskó, and Z. Farkas. Enabling scientific workflow
sharing through coarse-grained interoperability. Future
Generation Computer Systems, 37:46–59, 2014.


